Primary minor immunodeficiencies as a cause of immunodependent pathology in humans: Etiology, epidemiology, classification, diagnosis, and treatment (Systematic review)

Dmytro Maltsev

Article ID: 3683
Vol 40, Issue 1, 2026
DOI: https://doi.org/10.54517/jbrha3683

Download PDF

Abstract

Deficiencies in immune protection (both congenital and acquired through life) significantly influence a human’s life quality. Primary minor immunodeficiencies (PMDs) are more common in the population than classical immunodeficiencies and place a high burden on society. However, the evidence on PMDs is not systematized. The aim of the current research became the analysis and synthesis of the evidence on etiology, epidemiology, diversity, clinical manifestations, diagnosis, and treatment of PMD in humans to synthesize a scientific concept. In this way, the systematic review of publications from PubMed and SCOPUS databases has been conducted by the keywords. The time of analysis was the period from 1960 to 2025. Out of 2937 primary publications, 424 that met the selection criteria were included in the final list. As a result, terminology, genetic heterogeneity, epidemiology, spectrum of manifestation, structuring of clinical syndromes, and classification of PMD were clarified due to the current research. A distinction is made between PMD and classical immunodeficiencies. The algorithms of diagnostics and immunotherapeutic interventions were considered. The scientific concept of PMD diagnosis and treatment was proposed, which presents PMDs as a universal natural model of the development of different human immune-dependent pathologies on a population scale. PMDs, by their prevalence in the population, diversity, and degree of clinical manifestation, can explain the development of the entire described spectrum of immunodependent diseases in humans. The proposed PMD concept can allow optimizing the clinical management of patients with associated immunodependent pathology using an integrative personalized multidisciplinary approach with the availability of etiology estimation and etiotropic treatment providing.


Keywords

eosinophilic peroxidase; immunodiagnostics; immunomodulation; immunotherapy; mannose binding lectin; myeloperoxidase; natural killer cells; natural killer T-lymphocytes; phagocytosis


References

  1. Bilyk L, Korylchuk N, Maltsev D, et al. Transformation of Ukrainian healthcare to the new conditions of development: Risks, solutions, modernisation options. Georgian Medical News. 2023; (344): 47–52.

  2. Yuan ZC, Xu WD, Lan YY, et al. Association of MBL2 gene polymorphisms and systemic lupus erythematosus susceptibility: A meta-analysis. International Journal of Rheumatic Diseases. 2021; 24(2): 147–158. doi: 10.1111/1756-185x.14017

  3. Garritano CRO, Nubila FD, Couto RM, et al. Use of transfer factor in immunosuppressed surgical patients. Revista do Colégio Brasileiro de Cirurgiões. 2017; 44(5): 452–456. doi: 10.1590/0100-69912017005005

  4. Giardino G, Di Matteo G, Giliani S, et al. Consensus of the Italian primary immunodeficiency network on the use and interpretation of genetic testing for diagnosing inborn errors of immunity. Journal of Allergy and Clinical Immunology. 2025; 155(4): 1149–1160. doi: 10.1016/j.jaci.2024.11.030

  5. Amirifar P, Ranjouri MR, Lavin M, et al. Ataxia-telangiectasia: Epidemiology, pathogenesis, clinical phenotype, diagnosis, prognosis and management. Expert Review of Clinical Immunology. 2020; 16(9): 859–871. doi: 10.1080/1744666x.2020.1810570

  6. Litzman J, Bartonkova D, Lokaj J. The efficacy of levamisole treatment in patients with clinical signs of minor immunodeficiency. Scripta Medica. 1995; 68(3–4): 103–112.

  7. Cain WA, Ammann AJ, Hong R, et al. IgE deficiency associated with chronic sinopulmonary infection. The Journal of Clinical Investigation. 1969; 48: 12a. doi: 10.1056/nejm196908282810904

  8. García Pavón Osorio S, López Tiro JJ, Gómez Vera J. Deficiencia de IgE: Un padecimiento olvidado? Revista Alergia México. 2009; 56(6): 192–197.

  9. Louis AG, Gupta S. Primary selective IgM deficiency: An ignored immunodeficiency. Clinical Reviews in Allergy & Immunology. 2014; 46(2): 104–111. doi: 10.1007/s12016-013-8375-x

  10. Gupta S, Gupta A. Selective IgM deficiency— An underestimated primary immunodeficiency. Frontiers in Immunology. 2017; 8: 1056. doi: 10.3389/fimmu.2017.01056

  11. Portaro JK, Zighelboim J, Fahey JL. Hereditary deficiency of K cells in a normal subject. Clinical Immunology and Immunopathology. 1978; 11(4): 458–469. doi: 10.1016/0090-1229(78)90173-3

  12. Vel’tishchev IuE. Compensated or minor anomalies of the immune system. Sovetskaya Meditsina. 1988; (7): 46–50.

  13. Van Kessel DA, Horikx PE, Van Houte AJ, et al. Clinical and immunological evaluation of patients with mild IgG1 deficiency. Clinical and Experimental Immunology. 1999; 118(1): 102–107. doi: 10.1046/j.1365-2249.1999.01023.x

  14. Janssen LMA, Bassett P, Macken T, et al. Mild hypogammaglobulinemia can be a serious condition. Frontiers in Immunology. 2018; 9: 2384. doi: 10.3389/fimmu.2018.02384

  15. Catli G, Gao W, Foley C, et al. Atypical STAT5B deficiency, severe short stature and mild immunodeficiency associated with a novel homozygous STAT5B Variant. Molecular and Cellular Endocrinology. 2023; 559: 111799. doi: 10.1016/j.mce.2022.111799

  16. Hashimoto S, Miyawaki T, Futatani T, et al. Atypical X-linked agammaglobulinemia diagnosed in three adults. Internal Medicine. 1999; 38(9): 722–725. doi: 10.2169/internalmedicine.38.722

  17. Caka C, Cimen O, Kahyaoğlu P, et al. Selective IgM deficiency: Follow-up and outcome. Pediatric Allergy and Immunology. 2021; 32(6): 1327–1334. doi: 10.1111/pai.13497

  18. Janssen LMA, van Hout RWNM, de Vries E, et al. Challenges in investigating patients with isolated decreased serum IgM: The SIMcal study. Scandinavian Journal of Immunology. 2019; 89(6): e12763. doi: 10.1111/sji.12763

  19. Cappelletti P, Doretto P, Signori D, et al. Eosinophilic peroxidase deficiency. Cytochemical and ultrastructural characterisation of 21 new cases. American Journal of Clinical Pathology. 1992; 98(6): 615–622. doi: 10.1093/ajcp/98.6.615

  20. Régent A, Autran B, Carcelain G, et al. Idiopathic CD4 lymphocytopenia: Clinical and immunological characteristics and follow-up of 40 patients. Medicine. 2014; 93(2): 61–72. doi: 10.1097/md.0000000000000017

  21. Introne WJ, Westbroek W, Cullinane AR, et al. Neurological involvement in patients with atypical Chediak-Higashi disease. Neurology. 2016; 86(14): 1320–1328. doi: 10.1212/wnl.0000000000002551

  22. Koskinen S. Long-term follow-up of health in blood donors with primary selective IgA deficiency. Journal of Clinical Immunology. 1996; 16(3): 165–170. doi: 10.1007/bf01540915

  23. Endoh M, Kaneshige H, Tomino Y, et al. Selective IgM deficiency: A case study. Tokai Journal of Experimental and Clinical Medicine. 1981; 6(3): 327–331.

  24. van de Vosse E, van Ostaijen-Ten Dam MM, Vermaire R, et al. Recurrent respiratory tract infections (RRTI) in the elderly: A late onset mild immunodeficiency? Clinical Immunology. 2017; 180: 111–119. doi: 10.1016/j.clim.2017.05.008

  25. Nakagawa T, Ikemoto T, Takeuchi T, et al. Eosinophilic peroxidase deficiency: Identification of a point mutation (D648N) and prediction of structural changes. Human Mutation. 2001; 17(3): 235–236. doi: 10.1002/humu.10

  26. Roa S, Isidoro-Garcia M, Davila I, et al. Molecular analysis of activation-induced cytidine deaminase gene in immunoglobulin-E deficient patients. Clinical and Developmental Immunology. 2008; 2008: 146715. doi: 10.1155/2008/146715

  27. Castillo-Tong DC, Pils D, Heinze G, et al. Association of myeloperoxidase with ovarian cancer. Tumour Biology. 2014; 35(1): 141–148. doi: 10.1007/s13277-013-1017-3

  28. Zhang J, van Oostrom D, Li J, et al. Innate mechanisms in selective IgA deficiency. Frontiers in Immunology. 2021; 12: 649112. doi: 10.3389/fimmu.2021.649112

  29. Komvilaisak P, Yudhasompop N, Kanchanakamhaeng K, et al. Screening for ELANE, HAX1 and GFI1 gene mutations in children with neutropenia and clinical characterization of two novel mutations in ELANE gene. BMC Pediatrics. 2023; 23(1): 592. doi: 10.1186/s12887-023-04428-w

  30. Wen LY, Ma X, Peng HF, et al. Neutrophil elastase gene mutation-induced cyclic neutropenia: A case report. Zhonghua Nei Ke Za Zhi. 2023; 62(2): 193–196. doi: 10.3760/cma.j.cn112138-20220618-00460

  31. Zeidler A, Borbaran-Bravo N, Dannenmann B, et al. Differential transcriptional control of hematopoiesis in congenital
    and cyclic neutropenia patients harboring ELANE mutations. Haematologica. 2024; 109(5): 1393–1402. doi: 10.3324/
    haematol.2023.284033

  32. Horwitz MS, Corey SJ, Grimes HL, et al. ELANE mutations in cyclic and severe congenital neutropenia: Genetics and pathophysiology. Hematology/Oncology Clinics of North America. 2013; 27(1): 19–41. doi: 10.1016/j.hoc.2012.10.004

  33. Kakkas I, Tsinti G, Kalala F, et al. TACI Mutations in primary antibody deficiencies: A nationwide study in Greece. Medicina. 2021; 57(8): 827. doi: 10.3390/medicina57080827

  34. Aghamohammadi A, Mohammadi J, Parvaneh N, et al. Progression of selective IgA deficiency to common variable immunodeficiency. International Archives of Allergy and Immunology. 2008; 147(2): 87–92. doi: 10.1159/000135694

  35. Sgrulletti M, Costagliola G, Giardino G, et al. The evolutionary scenario of pediatric unclassified primary antibody deficiency to adulthood. Journal of Clinical Medicine. 2023; 12(13): 4206. doi: 10.3390/jcm12134206

  36. Nauseef WM, Brigham S, Cogley M. Hereditary myeloperoxidase deficiency due to a missense mutation of arginine 569 to tryptophan. Journal of Biological Chemistry. 1994; 269(2): 1212–1216.

  37. Kutter D. Prevalence of myeloperoxidase deficiency: Population studies using Bayer-Technicon automated hematology. Journal of Molecular Medicine (Berlin). 1998; 76(10): 669–675. doi: 10.1007/s001090050266

  38. Petrides PE. Molecular genetics of peroxidase deficiency. Journal of Molecular Medicine (Berlin). 1998; 76(10): 688–698. doi: 10.1007/s001090050269

  39. Romano M, Patriarca P, Melo C, et al. Hereditary eosinophil peroxidase deficiency: Immunochemical and spectroscopic studies and evidence for a compound heterozygosity of the defect. Proceedings of the National Academy of Sciences of the United States of America. 1994; 91(26): 12496–12500. doi: 10.1073/pnas.91.26.12496

  40. Balduit A, Bianco AM, Mangogna A, et al. Genetic bases of C7 deficiency: Systematic review and report of a novel deletion determining functional hemizygosity. Frontier in Immunology. 2023; 14: 1192690. doi: 10.3389/fimmu.2023.1192690

  41. Alinger JB, Mace EM, Porter JR, et al. Human PLCG2 haploinsufficiency results in a novel natural killer cell immunodeficiency. Journal of Allergy and Clinical Immunology. 2024; 153(1): 216–229. doi: 10.1016/j.jaci.2023.09.002

  42. Gibson CS, MacLennan AH, Goldwater PN, et al. Mannose-binding lectin haplotypes may be associated with cerebral palsy only after perinatal viral exposure. American Journal of Obstetrics and Gynecology. 2008; 198(5): 509.e1–8. doi: 10.1016/j.ajog.2008.02.027

  43. Magen E, Schlesinger M, Ben-Zion I, et al. Helicobacter pylori infection in patients with selective immunoglobulin E deficiency. World Journal of Gastroenterology. 2015; 21(1): 240–245. doi: 10.3748/wjg.v21.i1.240

  44. Marin-Bejar O, Romero-Moya D, Rodriguez-Ubreva J, et al. Epigenome profiling reveals aberrant DNA methylation signature in GATA2 deficiency. Haematologica. 2023; 108(9): 2551–2557. doi: 10.3324/haematol.2022.282305

  45. Mosley JD, Shelley JP, Dickson AL, et al. Clinical associations with a polygenic predisposition to benign lower white blood cell counts. Nature Communications. 2024; 15(1): 3384. doi: 10.1038/s41467-024-47804-5

  46. Persad AS, Kameoka Y, Kanda S, et al. Arginine to cysteine mutation (R499C) found in a Japanese patient with complete myeloperoxidase deficiency. Gene Expression. 2006; 13(2): 67–71. doi: 10.3727/000000006783991863

  47. Barreto MESF, Lipay ME, Santos LD, et al. Duffy phenotyping and FY*B-67T/C genotyping as a screening test for benign constitutional neutropenia. Hematology, Transfusion and Cell Therapy. 2021; 43(4): 489–493. doi: 10.1016/j.htct.2020.08.015

  48. Charles BA, Hsieh MM, Adeyemo A, et al. Analyses of genome-wide association data, cytokines, and gene expression in African-Americans with benign ethnic neutropenia. PLoS One. 2018; 13(3): e0194400. doi: 10.1371/journal.pone.0194400

  49. Little KM, Conant JL, Devitt KA, et al. Novel ELANE mutation associated with a clinical presentation of cyclic neutropenia. Journal of the Association of Genetic Technologists. 2023; 49(4): 167–170.

  50. van de Winkel JG, de Wit TP, Ernst LK, et al. Molecular basis for a familial defect in phagocyte expression of IgG receptor I (CD64). Journal of Immunology. 1995; 154(6): 2896–2903.

  51. Orange JS. How I manage natural killer cell deficiency. Journal of Clinical Immunology. 2020; 40(1): 13–23. doi: 10.1007/
    s10875-019-00711-7

  52. Reed AE, Peraza J, van den Haak F, et al. β-Actin G342D as a cause of NK cell deficiency impairing lytic synapse termination. Journal of Immunology. 2024; 212(6): 962–973. doi: 10.4049/jimmunol.2300671

  53. Maltsev D, Stefanyshyn V. The efficacy of combined immunotherapy with propes and inflamafertin in adult patients with genetic deficiency of the folate cycle and selective deficiency of NK and NKT cells. Immunology. 2022; 167(3): 443–450. doi: 10.1111/imm.13548

  54. Jordan MA, Fletcher J, Baxter AG. Genetic control of NKT cell numbers. Immunology and Cell Biology. 2004; 82(3): 276–284. doi: 10.1111/j.0818-9641.2004.01264.x

  55. de Vries E, Koene HR, Vossen JM, et al. Identification of an unusual Fc gamma receptor IIIa (CD16) on natural killer cells in a patient with recurrent infections. Blood. 1996; 88(8): 3022–3027.

  56. Grier JT, Forbes LR, Monaco-Shawver L, et al. A human immunodeficiency-causing mutation implicates CD16 in spontaneous NK cell cytotoxicity. Journal of Clinical Investigation. 2012; 122(10): 3769–3780. doi: 10.1172/jci64837

  57. Karaselek MA, Kurar E, Keleş S, et al. Association of NK cell subsets and cytotoxicity with FCGR3A gene polymorphism in functional NK cell deficiency. Revista da Associação Médica Brasileira. 2024; 70(2): e20230872. doi: 10.1590/1806-9282.20230872

  58. Leone F, Gori A, Cinicola BL, et al. Extra X, extra questions: Trisomy X syndrome and IgA deficiency—A case report. Frontiers in Immunology. 2024; 15: 1518076. doi: 10.3389/fimmu.2024.1518076

  59. Terada T, Kaneko H, Li AL, et al. Analysis of Ig subclass deficiency: First reported case of IgG2, IgG4, and IgA deficiency caused by deletion of C alpha 1, psi C gamma, C gamma 2, C gamma 4, and C epsilon in a Mongoloid patient. Journal of Allergy and Clinical Immunology. 2001; 108(4): 602–606.

  60. Saiga T, Hashimoto K, Kimura N, et al. Trisomy 10p and translocation of 10q to 4p are associated with selective dysgenesis of IgA-producing cells in lymphoid tissue. Pathology International. 2007; 57(1): 37–42. doi: 10.1111/j.1440-1827.2007.02054.x

  61. Sheikh V, Porter BO, DerSimonian R, et al. Administration of interleukin-7 increases CD4 T cells in idiopathic CD4 lymphocytopenia. Blood. 2016; 127(8): 977–988. doi: 10.1182/blood-2015-05-645077

  62. Cunningham-Rundles C. Genetic aspects of immunoglobulin A deficiency. Advances in Human Genetics. 1990; 19: 235–266. doi: 10.1007/978-1-4757-9065-8_4

  63. Su T, Chapin SJ, Bryant DM, et al. Reduced immunoglobulin A transcytosis associated with immunoglobulin A nephropathy and nasopharyngeal carcinoma. Journal of Biological Chemistry. 2011; 286(52): 44921–44925. doi: 10.1074/jbc.m111.296731

  64. Gallina R, Bottaro A, Boccazzi C, et al. The genetics of IgG4 deficiency: Role of the immunoglobulin heavy chain constant region and HLA loci. European Journal of Immunology. 1992; 22(1): 227–233. doi: 10.1002/eji.1830220133

  65. Geier CB, Piller A, Linder A, et al. Leaky RAG Deficiency in adult patients with impaired antibody production against bacterial polysaccharide antigens. PLoS One. 2015; 10(7): e0133220. doi: 10.1371/journal.pone.0133220

  66. Plebani A, Carbonara AO, Bottaro A, et al. Two siblings with deficiency of IgA1, IgG2, IgG4 and IgE due to deletion of immunoglobulin heavy chain constant region genes. Yearbook of Immunology. 1993; 7: 231–235.

  67. Drygiannakis I, Theodoraki E, Tsafaridou M, et al. Crohn’s disease—Like features in a patient with IgE and selective IgG1 and IgG3 deficiency. Cureus. 2023; 15(2): e34655. doi: 10.7759/cureus.34655

  68. Serwas NK, Cagdas D, Ban SA, et al. Identification of ITK deficiency as a novel genetic cause of idiopathic CD4+ T-cell lymphopenia. Blood. 2014; 124(4): 655–657. doi: 10.1182/blood-2014-03-564930

  69. Gorska MM, Alam R. A mutation in the human uncoordinated 119 gene impairs TCR signalling and is associated with CD4 lymphopenia. Blood. 2012; 119(6): 1399-13406. doi: 10.1182/blood-2011-04-350686

  70. De la Calle-Martin O, Hernandez M, Ordi J, et al. Familial CD8 deficiency due to a mutation in the CD8 alpha gene. Journal of Clinical Investigation. 2001; 108(1): 117–123. doi: 10.1172/jci10993

  71. Mancebo E, Moreno-Pelayo MA, Mencía A, et al. Gly111Ser mutation in the CD8A gene causing CD8 immunodeficiency is found in Spanish gypsies. Molecular Immunology. 2008; 45(2): 479–484. doi: 10.1016/j.molimm.2007.05.022

  72. Ytting H, Christensen IJ, Steffensen R, et al. Mannan-binding lectin (MBL) and MBL-associated serine protease 2 (MASP-2) genotypes in colorectal cancer. Scandinavian Journal of Immunology. 2011; 73(2): 122–127. doi: 10.1111/j.1365-3083.2010.02480.x

  73. Zhu Z, Atkinson TP, Hovanky KT, et al. High prevalence of complement component C6 deficiency among African-Americans in the southeastern USA. Clinical and Experimental Immunology. 2000; 119(2): 305–310. doi: 10.1046/j.1365-2249.2000.01113.x

  74. Densen P, Ackermann L, Saucedo L, et al. A point mutation creating a 3’ splice site in C8A is a predominant cause of C8α-γ deficiency in African Americans. Journal of Immunology. 2020; 205(6): 1535–1539. doi: 10.4049/jimmunol.2000272

  75. Dellepiane RM, Dell’Era L, Pavesi P, et al. Invasive meningococcal disease in three siblings with hereditary deficiency of the 8(th) component of complement: Evidence for the importance of an early diagnosis. Orphanet Journal of Rare Diseases. 2016; 11(1): 64–70. doi: 10.1186/s13023-016-0448-5

  76. Kira R, Ihara K, Watanabe K, et al. Molecular epidemiology of C9 deficiency heterozygotes with an Arg95Stop mutation of the C9 gene in Japan. Journal of Human Genetics. 1999; 44(2): 109–111. doi: 10.1007/s100380050119

  77. Milligan KL, Mann D, Rump A, et al. Complete myeloperoxidase deficiency: Beware the “false-positive” dihydrorhodamine oxidation. Journal of Pediatrics. 2016; 176: 204–206. doi: 10.1016/j.jpeds.2016.05.047

  78. Merz LE, Story CM, Osei MA, et al. Absolute neutrophil count by Duffy status among healthy Black and African American adults. Blood Advances. 2023; 7(3): 317–320. doi: 10.1182/bloodadvances.2022007679

  79. Dossou-Yovo OP, Lapoumeroulie C, Hauchecorne M, et al. Variants of the mannose-binding lectin gene in the Benin population: Heterozygosity for the p.G57E allele may confer a selective advantage. Human Biology. 2007; 79(6): 687–97. doi: 10.3378/027.081.0630

  80. Lipscombe RJ, Sumiya M, Hill AV, et al. High frequencies in African and non-African populations of independent mutations in the mannose binding protein gene. Human Molecular Genetics. 1992; 1(9): 709–715. doi: 10.1093/hmg%2F2.3.342

  81. Alcaïs A, Abel L, Casanova JL. Human genetics of infectious diseases: Between proof of principle and paradigm. Journal of Clinical Investigation. 2009; 119(9): 2506–2514. doi: 10.1172/jci38111

  82. Airo’ R, Milanesi B, Ferrari CM, et al. Deficit di mieloperossidasi: Prevalenza nella provincia di brescia e studio dell’attivita’ microbicida dei granulociti Myeloperoxidase deficiency: prevalence in the Brescia Province and a study of microbicidal activity in granulocytes. Haematologica. 1985; 70(1): 12–18.

  83. Nunoi H, Kohi F, Kajiwara H, et al. Prevalence of inherited myeloperoxidase deficiency in Japan. Microbiology and Immunology. 2003; 47(7): 527–531. doi: 10.1111/j.1348-0421.2003.tb03414.x

  84. Garcia-Laorden MI, Pena MJ, Caminero JA, et al. Influence of mannose-binding lectin on HIV infection and tuberculosis in a Western-European population. Molecular Immunology. 2006; 43(14): 2143–2150. doi: 10.1016/j.molimm.2006.01.008

  85. Antony JS, Ojurongbe O, van Tong H, et al. Mannose-binding lectin and susceptibility to schistosomiasis. Journal of Infectious Diseases. 2013; 207(11): 1675–1683. doi: 10.1093/infdis/jit081

  86. Garred P, Madsen HO, Hofmann B, et al. Increased frequency of homozygosity of abnormal mannan-binding-protein alleles in patients with suspected immunodeficiency. Lancet. 1995; 346(8980): 941–943. doi: 10.1016/s0140-6736(95)91559-1

  87. Hayama K, Sugai N, Tanaka S, et al. High-incidence of C9 deficiency throughout Japan: There are no significant differences in incidence among eight areas of Japan. International Archives of Allergy and Applied Immunology. 1989; 90(4): 400–404. doi: 10.1159/000235061

  88. Feng L. Epidemiological study of selective IgA deficiency among 6 nationalities in China. Zhonghua Yi Xue Za Zhi. 1992; 72(2): 88–90.

  89. Atallah-Yunes SA, Ready A, Newburger PE. Benign ethnic neutropenia. Blood Reviews. 2019; 37: 100586. doi: 10.1016/
    j.blre.2019.06.003

  90. Stanford E, Ladhani S, Borrow R, et al. Immunoglobulin G deficiency in United Kingdom children with invasive pneumococcal disease. Pediatric Infectious Disease Journal. 2011; 30(6): 462–465. doi: 10.1097/inf.0b013e3182191dfa

  91. Baker DA, Salvatore W, Milch PO. Effect of low-dose oral contraceptives on natural killer cell activity. Contraception. 1989; 39(1): 119–124. doi: 10.1016/0010-7824(89)90020-6

  92. Vladutiu AO. Immunoglobulin D: Properties, measurement, and clinical relevance. Clinical and Diagnostic Laboratory Immunology. 2000; 7(2): 131–140. doi: 10.1128/cdli.7.2.131-140.2000

  93. Walker AM, Kemp AS, Hill DJ, et al. Features of transient hypogammaglobulinemia in infants screened for immunological abnormalities. Archives of Disease in Childhood. 1994; 70(3): 183–186. doi: 10.1136/adc.70.3.183

  94. Keles S, Artac H, Kara R, et al. Transient hypogammaglobulinemia and unclassified hypogammaglobulinemia:
    Similarities and differences. Pediatric Allergy and Immunology. 2010; 21(5): 843–851. doi: 10.1111/j.1399-3038.2010.01010.x

  95. Entezari N, Adab Z, Zeydi M, et al. The prevalence of selective immunoglobulin M deficiency (SIgMD) in Iranian volunteer blood donors. Human Immunology. 2016; 77(1): 7–11. doi: 10.1016/j.humimm.2015.09.051

  96. Hobbs JR. IgM deficiency. Birth Defects. 1975; 11(1): 112–116.

  97. Ni J, Zhang J, Chen Q, et al. The epidemiology and clinical features of selective immunoglobulin M deficiency: A single-centre study in China. Journal of Clinical Laboratory Analysis. 2020; 34(7): e23289. doi: 10.1002/jcla.23289

  98. Lacombe C, Aucouturier P, Preud homme JL. Selective IgG1 deficiency. Clinical Immunology and Immunopathology. 1997; 84(2): 194–201. doi: 10.1006/clin.1997.4386

  99. Özcan C, Metin A, Erkoçoğlu M, et al. Bronchial hyperreactivity in children with antibody deficiencies. Allergologia
    et Immunopathologia. 2015; 43(1): 57–61. doi: 10.1016/j.aller.2013.09.014

  100. Ludvigsson JF, Neovius M, Hammarström L. Association between IgA deficiency and other autoimmune conditions: A population-based matched cohort study. Journal of Clinical Immunology. 2014; 34(4): 444–451. doi: 10.1007/s10875-014-0009-4

  101. Levin TA, Ownby DR, Smith PH, et al. Relationship between extremely low total serum IgE levels and rhinosinusitis. Annals of Allergy, Asthma & Immunology. 2006; 97(5): 650–652. doi: 10.1016/S1081-1206%2810%2961095-2

  102. Makin T, Borish L, Nylund CM, et al. IgE deficiency is not associated with hypogammaglobulinemia in a large cohort of military recruits. Annals of Allergy, Asthma & Immunology. 2024; (24): S1081–1206. doi: 10.1016/j.anai.2024.04.025

  103. Unsworth DJ, Virgo PF, Lock RJ. Immunoglobulin E deficiency: A forgotten clue pointing to possible
    immunodeficiency? Annals of Clinical Biochemistry. 2011; 48(Pt 5): 459–461. doi: 10.1258/acb.2011.011052

  104. Fraser PA, Schur PH. Hypoimmunoglobulinemia D: Frequency, family studies, and association with HLA. Clinical Immunology and Immunopathology. 1981; 19(1): 67–74. doi: 10.1016/0090-1229(81)90048-9

  105. García-Laorden MI, Hernández-Brito E, Muñoz-Almagro C, et al. Should MASP-2 deficiency be considered a primary immunodeficiency? Relevance of the lectin pathway. Journal of Clinical Immunology. 2020; 40: 203–210. doi: 10.1007/s10875-019-00714-4

  106. Kim J, Hwang S, Hwang N, et al. Severe congenital neutropenia mimicking chronic idiopathic neutropenia: A case report. Journal of Yeungnam Medical Science. 2023; 40(3): 283–288. doi: 10.12701/jyms.2022.00353

  107. Kavirayani V, Negi A, Prabhu MM. Acute cryptococcal meningitis in a patient with idiopathic CD4 lymphocytopenia: A rare clinical entity. Cureus. 2023; 15(8): e43417. doi: 10.7759/cureus.43417

  108. Busch MP, Valinsky JE, Paglieroni T, et al. Screening of blood donors for idiopathic CD4+ T-lymphocytopenia. Transfusion. 1994; 34(3): 192–197. doi: 10.1046/j.1537–2995.1994.34394196614.x

  109. Gunn E, Powers JM, Rahman AF, et al. Diagnosis and management of isolated neutropenia: A survey of pediatric hematologist oncologists. Pediatric Blood & Cancer. 2023; 70(2): e29946. doi: 10.1002/pbc.29946

  110. Njue L, Porret N, Schnegg-Kaufmann AS, et al. Isolated severe neutropenia in adults, evaluation of underlying causes and outcomes, real-world data collected over a 5-year period in a tertiary referral hospital. Medicina (Kaunas). 2024; 60(10): 1576. doi: 10.3390/medicina60101576

  111. Hua L, Guo D, Liu X, et al. Selective IgA deficiency with multiple autoimmune comorbidities: A case report
    and literature review. Iranian Journal of Immunology. 2023; 20(2): 232–239.
    doi: 10.22034/iji.2023.97452.2513

  112. Chaushu S, Yefenof E, Becker A, et al. Severe impairment of secretory Ig production in parotid saliva of
    Down syndrome individuals. Journal of Dental Research. 2002; 81(5): 308–312. doi: 10.1177/154405910208100504

  113. Jeraiby MA. Molecular basis of immunoglobulin heavy constant G4 gene (IGHG4)-related low serum IgG4 subclasses in down syndrome. Saudi Medical Journal. 2021; 42(9): 975–980.

  114. Andreou A, Jayaram J, Walker A, et al. Re-examining the utility and validity of benign ethnic neutropenia: A narrative literature review. Schizophrenia Research. 2023; 253: 48–53. doi: 10.1016/j.schres.2022.02.009

  115. Nasser NMF, Pastorino AC, de Moura TCL, et al. Understanding the natural history of selective IgA deficiency. Journal of Pediatrics (Rio de Janeiro). 2025; S0021-7557(25)00065-8. doi: 10.1016/j.jped.2025.03.002

  116. Li PH, Wong WW, Leung EN, et al. Novel pathogenic mutations identified in the first Chinese pedigree of complete C6 deficiency. Clinical & Translational Immunology. 2020; 9(7): e1148. doi: 10.1002/cti2.1148

  117. Cipe FE, Doğu F, Güloğlu D, et al. B-cell subsets in patients with transient hypogammaglobulinemia of infancy, partial IgA deficiency, and selective IgM deficiency. Journal of Investigational Allergology and Clinical Immunology. 2013; 23(2): 94–100.

  118. Jamee M, Alaei MR, Mesdaghi M, et al. The prevalence of selective and partial immunoglobulin A deficiency in patients with autoimmune polyendocrinopathy. Immunological Investigations. 2022; 51(4): 778–786. doi: 10.1080/08820139.2021.1872615

  119. Pérez-Portilla A, Moraru M, Blázquez-Moreno A, et al. Identification of the first cases of complete CD16A deficiency: Association with persistent EBV infection. Journal of Allergy and Clinical Immunology. 2020; 145(4): 1288–1292. doi: 10.1016/j.jaci.2019.11.049

  120. Orren A, Würzner R, Potter PC, et al. Properties of a low molecular weight complement component C6 found in human subjects with subtotal C6 deficiency. Immunology. 1992; 75(1): 10–16.

  121. Barton JC, Barton JC, Bertoli LF, et al. Characterisation of adult patients with IgG subclass deficiency and subnormal IgG2. PLoS One. 2020; 15(10): e0240522. doi: 10.1371/journal.pone.0240522

  122. Shackelford PG, Granoff DM, Polmar SH, et al. Subnormal serum concentrations of IgG2 in children with frequent infections associated with varied patterns of immunological dysfunction. Journal of Pediatrics. 1990; 116(4): 529–538. doi: 10.1016/S0022-3476(05)81598-7

  123. Jongco AM 3rd, Sporter R, Hon E, et al. Characterization of infants with idiopathic transient and persistent T cell lymphopenia identified by newborn screening—A single-center experience in New York State. Journal of Clinical Immunology. 2021; 41(3): 610–620. doi: 10.1007/s10875-020-00957-6

  124. Abraitytė S, Kotsi E, Devlin LA, et al. Unexpected combination: DiGeorge syndrome and myeloperoxidase deficiency.
    BMJ Case Reports. 2020; 13(2): e232741. doi: 10.1136/bcr-2019-232741

  125. Chavoshzadeh Z, Sharafian S, Alavi S, et al. Leukocyte adhesion deficiency type III in an infant presenting with intestinal perforation and low percentage of natural killer cells: First case report from Iran. BMC Pediatrics. 2025; 25(1): 315. doi: 10.1186/s12887-025-05674-w

  126. Mannes M, Halbgebauer R, Wohlgemuth L, et al. Combined heterozygous genetic variations in complement C2 and C8B: An explanation for multidimensional immune imbalance? Journal of Innate Immunity. 2023; 15(1): 412–427. doi: 10.1159/000528607

  127. Wawrzycka-Adamczyk K, Matyja-Bednarczyk A, Giza A, et al. Coexistence of ataxia telangiectasia syndrome and idiopathic CD4 lymphopenia: Diagnostic difficulties in a complex immunodeficiency case report. Polish Archives of Internal Medicine. 2022; 132(5): 16202. doi: 10.20452/pamw.16202

  128. Huynh I, Woody DM, Ahmed-Khan MA, et al. Lost and found: Misdiagnosis of AIDS-related bone marrow suppression as neutropenic fever and benign ethnic neutropenia in a patient with congenital HIV. Cureus. 2024; 16(9): e68632. doi: 10.7759/cureus.68632

  129. Hammarström L, Smith CI. Development of IgG2 deficiency in a bone-marrow-transplanted patient. Implication for generation of the anticarbohydrate antibody repertoire in subclass-deficient individuals. Transplant. 1987; 43(6): 917–919.

  130. AlShomar A. Isolated benign neutropenia in healthy individuals from Saudi Arabia’s central region: A comprehensive study. International Journal of Health Sciences (Qassim). 2023; 17(6): 23–27.

  131. Borinstein SC, Agamasu D, Schildcrout JS, et al. Frequency of benign neutropenia among black versus white individuals undergoing a bone marrow assessment. Journal of Cellular and Molecular Medicine. 2022; 26(13): 3628–3635. doi: 10.1111/jcmm.17346

  132. Centor RM, Chung CP, Mosley JD. Web Exclusive. Annals on call-Understanding benign neutropenia. Annals of Internal Medicine. 2022; 175(11). doi: 10.7326/a21-0022

  133. Chok R, Price V, Steele M, et al. Pediatric benign neutropenia: Assessing practice preferences in Canada. Journal of Pediatric Hematology/Oncology. 2022; 44(6): 318–322. doi: 10.1097/mph.0000000000002427

  134. Ponder R. A protected class, an unprotected condition, and a biomarker - A method/formula for increased diversity in clinical trials for the African American subject with benign ethnic neutropenia (BEN) - CORRIGENDUM. American Journal of Law & Medicine. 2023; 49(4): 525. doi: 10.1017/amj.2023.24

  135. Elhadad D, Simon AJ, Bronstein Y, et al. Presence of “ACKR1/DARC null” polymorphism in Arabs from Jisr
    az-Zarqa with benign ethnic neutropenia. Pediatric Research. 2022; 91(5): 1012–1014. doi: 10.1038/s41390-021-01623-2

  136. Gay K, Dulay K, Ravindranath Y, et al. Duffy-null phenotype-associated neutropenia is the most common etiology for leukopenia/neutropenia referrals to a tertiary children’s hospital. Journal of Pediatrics. 2023; 262: 113608. doi: 10.1016/j.jpeds.2023.113608

  137. Hysong MR, Shuey MM, Huffman JE, et al. Characterization of the phenotypic consequences of the Duffy-null genotype. Blood Advances. 2025; 9(6): 1452–1462. doi: 10.1182/bloodadvances.2024014399

  138. Zammar G, Fong E, Creeper KJ. Clinical parameters of patients with Duffy null phenotype: A single centre, retrospective review. Pathology. 2025; 57(4): 484–488. doi: 10.1016/j.pathol.2024.11.010.

  139. Bizymi N, Damianaki A, Aresti N, et al. Characterization of myeloid-derived suppressor cells in the peripheral blood and bone marrow of patients with chronic idiopathic neutropenia. Hemasphere. 2024; 8(9): e70005. doi: 10.1002/hem3.70005

  140. Chennapragada SS, Sharma S, Dadi N, et al. Real-world data of leukopenia evaluation as seen in a community
    academic center. Journal of Community Hospital Internal Medicine Perspectives. 2023; 13(6): 126–128. doi: 10.55729/2000-9666.1273

  141. Donadieu J, Frenz S, Merz L, et al. Chronic neutropenia: How best to assess severity and approach management? Expert Review of Hematology. 2021; 14(10): 945–960. doi: 10.1080/17474086.2021.1976634

  142. Fattizzo B, Bosi A, Sorrenti M, et al. Natural history of chronic idiopathic neutropenia of the adult. Scientific Reports. 2024; 14(1): 21891. doi: 10.1038/s41598-024-71719-2

  143. Gkoufa A, Sklapani P, Trakas N, et al. A challenging cutaneous lesion in a patient with chronic idiopathic neutropenia. Cureus. 2022; 14(1): e21225. doi: 10.7759/cureus.21225

  144. Ogbue OD, Kewan T, Bahaj WS, et al. New approaches to idiopathic neutropenia in the era of clonal hematopoiesis. Experimental Hematology & Oncology. 2023; 12(1): 42. doi: 10.1186/s40164-023-00403-4

  145. Anzinger H, Cadili L, Li A, et al. A distinct case of an 8-year-old female with cyclic neutropenia presenting with C. Septicum abdominal sepsis and myonecrosis requiring a bowel resection and leg fasciotomy. Journal of Surgical Case Reports. 2023; 2023(9): 1–3. doi: 10.1093/jscr/rjad512

  146. Guarino AD, Luglio G, Imperatore N, et al. Cyclic neutropenia mimicking Crohn’s disease: Two case reports and a narrative review. Journal of Clinical Medicine. 2023; 12(19): 6323. doi: 10.3390/jcm12196323

  147. Kapogiannis C, Zaggogianni T, Stergiou N, et al. Cyclic neutropenia and concomitant IgA nephropathy: A case report. BMC Nephrology. 2023; 24(1): 124. doi: 10.1186/s12882-023-03179-1

  148. Li JL, Zhao JJ, Li RJ, et al. Cyclic neutropenia: A case report and literature review. American Journal of Translational Research. 2025; 17(2): 1153–1161. doi: 10.62347/olfs3168

  149. Tayal A, Meena JP, Kaur R, et al. A novel homozygous HAX1 mutation in a child with cyclic neutropenia:
    A case report and review. Journal of Pediatric Hematology/Oncology. 2022; 44(2): e420-e423. doi: 10.1097/mph.0000000000002110

  150. Benavides-Nieto M, Adam F, Martin E, et al. Somatic RAP1B gain-of-function variant underlies isolated
    thrombocytopenia and immunodeficiency. Journal of Clinical Investigation. 2024; 134(17): e169994.
    doi: 10.1172/jci169994

  151. Magen E, Geishin A, Weizman A, et al. High rates of mood disorders in patients with chronic idiopathic eosinopenia. Brain, Behavior, and Immunity – Health. 2024; 40: 100847. doi: 10.1016/j.bbih.2024.100847

  152. Magen E, Merzon E, Green I, et al. Chronic idiopathic eosinopenia and chronic spontaneous urticaria. Journal of Allergy and Clinical Immunology: In Practice. 2023; 11(8): 2583–2586. doi: 10.1016/j.jaip.2023.03.057

  153. Magen E, Vinker-Shuster M, Merzon E, et al. Chronic idiopathic eosinopenia, allergic, and autoimmune disorders. Journal of Allergy and Clinical Immunology: In Practice. 2024; 12(7): 1933–1936.e1. doi: 10.1016/j.jaip.2024.03.048

  154. Abdalgani M, Hernandez ER, Pedroza LA, et al. Clinical, immunologic, and genetic characteristics of 148 patients with natural killer cell deficiency. Journal of Allergy and Clinical Immunology. 2025; 155(5): 1623–1634. doi: 10.1016/j.jaci.2025.01.030

  155. Conte MI, Poli MC, Taglialatela A, et al. Partial loss-of-function mutations in GINS4 lead to NK cell deficiency with neutropenia. JCI Insight. 2022; 7(21): e154948. doi: 10.1172/jci.insight.154948

  156. Martinot M, Li SS, Farnarier C, et al. Persistent NK cell deficiency associated with pulmonary cryptococcosis. Annals of Clinical Microbiology and Antimicrobials. 2025; 24(1): 6. doi: 10.1186/s12941-024-00771-7

  157. Cho YN, Kee SJ, Lee SJ, et al. Numerical and functional deficiencies of natural killer T cells in systemic lupus erythematosus: Their deficiency related to disease activity. Rheumatology. 2011; 50(6): 1054–1063. doi: 10.1093/rheumatology%2Fkeq457

  158. Ho LP, Urban BC, Thickett DR, et al. Deficiency of a subset of T-cells with immunoregulatory properties in sarcoidosis. Lancet. 2005; 365(9464): 1062–1072. doi: 10.1016/s0140-6736(05)71143-0

  159. Lee SJ, Cho YN, Kim TJ, et al. Natural killer T cell deficiency in active adult-onset Still’s disease: Correlation of natural killer T cell deficiency with natural killer cell dysfunction. Arthritis and Rheumatism. 2012; 64(9): 2868–2877. doi: 10.1002/art.34514

  160. Merselis LC, Jiang SY, Nelson SF, et al. MPEG1/Perforin-2 haploinsufficiency associated polymicrobial skin infections and considerations for interferon-γ therapy. Frontiers in Immunology. 2020; 11: 601584. doi: 10.3389/fimmu.2020.601584

  161. McMurray JC, Schornack BJ, Weskamp AL, et al. Immunodeficiency: Complement disorders. Allergy and Asthma Proceedings. 2024; 45(5): 305–309. doi: 10.2500/aap.2024.45.240050

  162. Szilágyi Á, Csuka D, Geier CB, et al. Complement genetics for the practicing allergist immunologist: focus on complement deficiencies. Journal of Allergy and Clinical Immunology: In Practice. 2022; 10(7): 1703–1711. doi: 10.1016/j.jaip.2022.02.036

  163. Staels F, Meersseman W, Stordeur P, et al. Terminal complement pathway deficiency in an adult patient with meningococcal sepsis. Case Reports in Immunology. 2022; 2022: 9057000. doi: 10.1155/2022/9057000

  164. Khalil SM, Aqel S, Mudawi DS, et al. The first case report of complement component 7 deficiency in Qatar and a 10-year follow-up. Frontiers in Immunology. 2023; 14: 1253301. doi: 10.3389/fimmu.2023.1253301

  165. van den Broek B, Coolen JPM, de Jonge MI, et al. Neisseria meningitidis serogroup Z meningitis in a child with complement C8 deficiency and potential cross protection of the MenB-4C vaccine. Pediatric Infectious Disease Journal. 2021; 40(11): 1019–1022. doi: 10.1097/inf.0000000000003259

  166. Daungsupawong H, Wiwanitkit V. Humoral and cellular response to the third COVID-19 vaccination in patients with inborn errors of immunity or mannose-binding lectin deficiency: Correspondence. Wiener klinische Wochenschrift. 2025; 137(1–2): 58–59. doi: 10.1007/s00508-024-02481-8

  167. Ramphul M, Poghosyan A, Afzal J, et al. Respiratory outcomes at 5-year follow-up in children with mannose-binding lectin deficiency: A retrospective cohort study. Thoracic Research and Practice. 2023; 24(2): 85–90. doi: 10.5152/ThoracResPract.2023.22121

  168. Ruffles T, Basu K, Inglis SK, et al. Mannose-binding lectin genotype is associated with respiratory disease in young children: A multicenter cohort study. Pediatric Pulmonology. 2022; 57(11): 2824–2833. doi: 10.1002/ppul.26109

  169. Stengaard-Pedersen K, Thiel S, Gadjeva M, et al. Inherited deficiency of mannan-binding lectin-associated protein protease 2. New England Journal of Medicine. 2003; 349(6): 554–560. doi: 10.1056/nejmoa022836

  170. Agyemang EA, Makanga DM, Abdallah M, et al. Idiopathic CD4 lymphocytopenia: A case report and literature review. Cureus. 2024; 16(3): e56968. doi: 10.7759/cureus.56968

  171. Baomo L, Guofen Z, Jie D, et al. Disseminated cryptococcosis in a patient with idiopathic CD4+ T lymphocytopenia presenting as prostate and adrenal nodules: Diagnosis from pathology and mNGS, a case report. BMC Infectious Diseases. 2024; 24(1): 26. doi: 10.1186/s12879-023-08926-1

  172. Bukhamseen F, Al-Shamrani A. An under-recognized disease: A rare case of idiopathic CD4 lymphopenia
    mislabeled as primary ciliary dyskinesia. Children (Basel). 2022; 9(10): 1534. doi: 10.3390/children9101534

  173. Cudrici CD, Boulougoura A, Sheikh V, et al. Characterization of autoantibodies, immunophenotype and autoimmune disease in a prospective cohort of patients with idiopathic CD4 lymphocytopenia. Clinical Immunology. 2021; 224: 108664. doi: 10.1016/j.clim.2021.108664

  174. Kumar G, Schmid-Antomarchi H, Schmid-Alliana A, et al. Idiopathic CD4 T cell lymphocytopenia: A case of overexpression of PD-1/PDL-1 and CTLA-4. Infectious Disease Reports. 2021; 13(1): 72–81. doi: 10.3390/idr13010009

  175. Li B, Li T, Lu Q, et al. Severe disseminated Talaromyces marneffei infection in idiopathic CD4 lymphopenia. IDCases. 2025; 39: e02148. doi: 10.1016/j.idcr.2025.e02148

  176. Darmawan D, Raychaudhuri S, Lakshminrusimha S, et al. Hypogammaglobulinemia in neonates: Illustrative cases and review of the literature. Journal of Perinatology. 2024; 44(7): 929–934. doi: 10.1038/s41372-023-01766-6

  177. Emsen A, Uçaryılmaz H, Güler T, et al. Regulatory T and B cells in transient hypogammaglobulinemia of infancy. Turkish Journal of Pediatrics. 2022; 64(2): 228–238. doi: 10.24953/turkjped.2021.83

  178. Ito T, Iwamoto S, Hirayama M, et al. Transient hypogammaglobulinemia of infancy may be associated with reduced switched memory B cells and del (16) (p11.2p12). Clinical Case Reports. 2021; 9(6): e3837. doi: 10.1002/ccr3.3837

  179. Justiz-Vaillant AA, Hoyte T, Davis N, et al. A systematic review of the clinical diagnosis of transient hypogammaglobulinemia of infancy. Children (Basel). 2023; 10(8): 1358. doi: 10.3390/children10081358

  180. Ulman H, Aygün A, Çağlar D, et al. Transient hypogammaglobulinemia of infancy and unclassified syndromic immunodeficiencies are highly common in oesophageal atresia patients. Scandinavian Journal of Immunology. 2024; 99(2): e13338. doi: 10.1111/sji.13338

  181. Imam K, Huang J, White AA. Isotype deficiencies (IgG subclass and selective IgA, IgM, IgE deficiencies). Allergy and Asthma Proceedings. 2024; 45(5): 317–320. doi: 10.2500/aap.2024.45.240055

  182. Batista CHR, Smanio MCM, Poltronieri PB, et al. Selective IgM deficiency: Evaluation of 75 patients according to different diagnostic criteria. Immunologic Research. 2024; 73(1): 15. doi: 10.1007/s12026-024-09568-4

  183. Crescenzo F, Turazzini M, Rossi F. Selective IgM hypogammaglobulinemia and multiple sclerosis treated with natalizumab and ofatumumab: A case report. Journal of Personalized Medicine. 2025; 15(4): 155. doi: 10.3390/jpm15040155

  184. Janssen LMA, Macken T, Creemers MCW, et al. Truly selective primary IgM deficiency is probably very rare. Clinical and Experimental Immunology. 2018; 191(2): 203–211. doi: 10.1111/cei.13065

  185. Filion CA, Taylor-Black S, Maglione PJ, et al. Differentiation of common variable immunodeficiency from IgG deficiency. Journal of Allergy and Clinical Immunology: In Practice. 2019; 7(4): 1277–1284. doi: 10.1016/j.jaip.2018.12.004

  186. Altiner S, Ekinci A. Adult-onset periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis syndrome on the basis of selective IgA deficiency. Case Reports in Dermatological Medicine. 2024; 2024: 9845501. doi: 10.1155/2024/9845501

  187. Amiel A, Van Gucht T, Bolliet M, et al. Selective IgA deficiency and aseptic liver abscess as initial indicators of Crohn’s disease in a young woman: A case study. American Journal of Case Reports. 2024; 25: e944829. doi: 10.12659/ajcr.944829

  188. Vosughimotlagh A, Rasouli SE, Rafiemanesh H, et al. Clinical manifestation for immunoglobulin A deficiency: A systematic review and meta-analysis. Allergy, Asthma & Clinical Immunology. 2023; 19(1): 75. doi: 10.1186/s13223-023-00826-y

  189. Polosukhin VV, Richmond BW, Du RH, et al. Secretory IgA deficiency in individual small airways is associated with persistent inflammation and remodelling. American Journal of Respiratory and Critical Care Medicine. 2017; 195(8): 1010–1021. doi: 10.1164/rccm.201604-0759oc

  190. Agress A, Oprea Y, Roy S, et al. The association between malignancy, immunodeficiency, and atopy in IgE-deficient patients. Journal of Allergy and Clinical Immunology: In Practice. 2024; 12(1): 185–194. doi: 10.1016/j.jaip.2023.10.026

  191. Magen E, Schlesinger M, David M. Selective IgE deficiency, immune dysregulation, and autoimmunity. Allergy and Asthma Proceedings. 2014; 35(2): e27–33. doi: 10.2500/aap.2014.35.3734

  192. Nemet S, Elbirt D, Cohen R, et al. IgE deficiency (<2.5 IU/mL) in children: Clinical insights from a population-based study of 123,393 subjects. Pediatric Allergy and Immunology. 2025; 36(4): e70092. doi: 10.1111/pai.70092

  193. Picado C, de Landazuri IO, Vlagea A, et al. Spectrum of disease manifestations in patients with selective immunoglobulin E deficiency. Journal of Clinical Medicine. 2021; 10(18): 4160. doi: 10.3390/jcm10184160

  194. Matricardi PM. The very low IgE producer: Allergology, genetics, immunodeficiencies, and oncology. Biomedicines. 2023; 11(5): 1378. doi: 10.3390/biomedicines11051378

  195. Famuyiwa F, Rubinstein I. Chronic sinopulmonary inflammatory diseases in adults with undetectable serum IgE in inner-city Chicago: A preliminary observation. Lung. 2012; 190(3): 291–294. doi: 10.1007/s00408-012-9375-y

  196. Ferastraoaru D, Bax HJ, Bergmann C, et al. AllergoOncology: Ultra-low IgE, a potential novel biomarker in cancer—A position paper of the European academy of allergy and clinical immunology (EAACI). Clinical and Translational Allergy. 2020; 10(1): 32. doi: 10.1186/s13601-020-00335-w

  197. Al S, Asilsoy S, Uzuner N, et al. Is there a clinical significance of very low serum immunoglobulin E level? Journal of Clinical Immunology. 2021; 41(8): 1893–1901. doi: 10.1007/s10875-021-01127-y

  198. Ünsal H, Ekinci A, Aliyeva G, et al. Characteristics of patients with low serum IgE levels and selective IgE deficiency: Data from an immunodeficiency referral center. Clinical Immunology. 2025; 270: 110403. doi: 10.1016/j.clim.2024.110403

  199. Barton JC, Barton JC, Bertoli LF, et al. HLA-A and -B type and haplotype frequencies in IgG subclass deficiency subgroups. Archivum Immunologiae et Therapiae Experimentalis. 2020; 68(3): 14–21.

  200. Dogru D, Dogru Y, Atschekzei F, et al. Reappraisal of IgG subclass deficiencies: A retrospective comparative cohort study. Frontiers in Immunology. 2025; 16: 1552513. doi: 10.3389/fimmu.2025.1552513

  201. Ozkan H, Atlihan F, Genel F, et al. IgA and/or IgG subclass deficiency in children with recurrent respiratory infections and its relationship with chronic pulmonary damage. Journal of Investigational Allergology and Clinical Immunology. 2005; 15(1): 69–74.

  202. Zhang Y, Clarke A, Regan KH, et al. Isolated IgG2 deficiency is an independent risk factor for exacerbations
    in bronchiectasis. QJM: An International Journal of Medicine. 2022; 115(5): 292–297. doi: 10.1093/qjmed/hcab129

  203. Noori SA, Gungor S. Spinal epidural abscess associated with an epidural catheter in a woman with complex regional pain syndrome and selective IgG3 deficiency: A case report. Medicine. 2018; 97(50): e13272. doi: 10.1097/md.0000000000013272

  204. Keyeux G, Lefranc MP, Chevailler A, et al. Molecular analysis of the IGHA and MHC class III region genes in one family with IgA and C4 deficiencies. Experimental and Clinical Immunogenetics. 1990; 7(3): 170–180.

  205. Sugai S. Selective deficiency of IgA subclass. Ryoikibetsu Shokogun Shirizu. 2000; (32): 78–80.

  206. Kaneko H, Suzuki H, Kondo N. IgA subclass and IgA deficiency. Nihon Rinsho Meneki Gakkai Kaishi. 2009; 32(3): 142–148. doi: 10.2177/jsci.32.142

  207. Canales-Herrerias P, Garcia-Carmona Y, Shang J, et al. Selective IgA2 deficiency in a patient with small intestinal Crohn’s disease. Journal of Clinical Investigation. 2023; 133(12): e167742. doi: 10.1172/jci167742

  208. Chen R, Mu H, Chen X, et al. Qualitative immunoglobulin deficiency causes bacterial infections in patients with STAT1 gain-of-function mutations. Journal of Clinical Immunology. 2024; 44(5): 124. doi: 10.1007/s10875-024-01720-x

  209. Castaño-Jaramillo LM, Munevar A, Marín AC, et al. Clinical and immunological features of specific antibody deficiency in a pediatric hospital in Colombia. Biomedica. 2024; 44(Sp. 2): 72–79. doi: 10.7705/biomedica.7562

  210. Hatcher VR, Alix VC, Hellu TS, et al. Primary immunodeficiency: Specific antibody deficiency with normal IgG. Allergy and Asthma Proceedings. 2024; 45(5): 321–325. doi: 10.2500/aap.2024.45.240057

  211. Perrard N, Stabler S, Sanges S, et al. Diagnosis, characteristics, and outcome of selective anti-polysaccharide antibody deficiencies in a retrospective cohort of 55 adult patients. Journal of Clinical Immunology. 2025; 45(1): 82. doi: 10.1007/s10875-025-01874-2

  212. Misbah SA, Griffiths H, Mitchell T, et al. Antipolysaccharide antibodies in 450 children with otitis media. Clinical and Experimental Immunology. 1997; 109(1): 67–72. doi: 10.1046/j.1365-2249.1997.4291322.x

  213. Vaz de Castro PAS, Amaral AA, Almeida MG, et al. Examining the association between serum galactose-deficient IgA1 and primary IgA nephropathy: A systematic review and meta-analysis. Journal of Nephrology. 2024; 37(8): 2099–2112. doi: 10.1007/s40620-023-01874-8

  214. Vinci L, Strahm B, Speckmann C, et al. The different faces of GATA2 deficiency: Implications for therapy and surveillance. Frontiers in Oncology. 2024; 14: 1423856. doi: 10.3389/fonc.2024.1423856

  215. Cagdas D, Halacli SO, Tan C, et al. Diversity in serine/threonine protein kinase-4 deficiency and review of the literature. Journal of Allergy and Clinical Immunology: In Practice. 2021; 9(10): 3752–3766.e4. doi: 10.1016/j.jaip.2021.05.032

  216. Mella MA, Lavrinienko A, Akhi R, et al. Compensatory IgM to the rescue: Patients with selective IgA deficiency have increased natural IgM antibodies to MAA-LDL and no changes in oral microbiota. Immunohorizons. 2021; 5(4): 170–181. doi: 10.4049/immunohorizons.2100014

  217. Eriksen C, Moll JM, Myers PN, et al. IgG and IgM cooperate in coating of intestinal bacteria in IgA deficiency. Nature Communications. 2023; 14(1): 8124. doi: 10.1038/s41467-023-44007-2

  218. Sortino O, Dias J, Anderson M, et al. Preserved mucosal-associated invariant T-cell numbers and function
    in idiopathic CD4 lymphocytopenia. Journal of Infectious Diseases. 2021; 224(4): 715–725. doi: 10.1093/infdis/jiaa782

  219. Seto N, Suzuki T, Fukuchi T, et al. Disseminated nocardiosis in idiopathic CD4 lymphocytopenia: A rare case and literature review. Internal Medicine. 2025; 64(18): 2797–2803. doi: 10.2169/internalmedicine.4984-24

  220. Varmpompiti K, Westwood AJ, Ben-Joseph A, et al. Progressive multifocal leukoencephalopathy secondary to idiopathic CD4 lymphocytopenia treated with pembrolizumab. Journal of Neuroimmunology. 2023; 385: 578248. doi: 10.1016/j.jneuroim.2023.578248

  221. Yadav P, Kumar D, Bohra GK, et al. Progressive disseminated histoplasmosis in idiopathic CD4 lymphocytopenia an underdiagnosed combination - A case report. Medicine and Pharmacy Reports. 2022; 95(2): 209–213. doi: 10.15386/mpr-1908

  222. Sener S, Basaran O, Batu ED, et al. Childhood-onset Takayasu arteritis and immunodeficiency: Case-based review. Clinical Rheumatology. 2022; 41(9): 2883–2892. doi: 10.1007/s10067-022-06295-9

  223. Sharma S, Nadig PL, Pilania RK, et al. Kawasaki disease and inborn errors of immunity: Exploring the link and implications. Diagnostics (Basel). 2023; 13(13): 2151. doi: 10.3390/diagnostics13132151

  224. Zhang D, Su G, Hao S, et al. Paediatric autoimmune diseases with ELANE mutations associated with neutropenia. Pediatric Rheumatology Online Journal. 2023; 21(1): 41. doi: 10.1186/s12969-023-00824-9

  225. Belfrage E, Jinnestål CL, Jönsen A, et al. Role of Mannose-binding lectin and association with microbial sensitization in a cohort of patients with atopic dermatitis. Acta Dermato-Venereologica. 2023; 103: adv2405. doi: 10.2340/actadv.v103.2405

  226. Yan C, Qiu J, Pan X, et al. Mixed pulmonary infection, asthma, and nephrotic syndrome in a patient diagnosed with
    selective IgA deficiency: A case report. Journal of Inflammation Research. 2025; 18: 127–132. doi: 10.2147/jir.s492482

  227. Shavit R, Maoz-Segal R, Frizinsky S, et al. Combined immunodeficiency (CVID and CD4 lymphopenia) is associated with a high risk of malignancy among adults with primary immune deficiency. Clinical and Experimental Immunology. 2021; 204(2): 251–257. doi: 10.1111/cei.13579

  228. Yu L, Li Y, Li W, et al. Case report: A cyclic neutropenia patient with ELANE mutation accompanied by hemophagocytic lymphohistiocytosis. Frontiers in Immunology. 2024; 15: 1474429. doi: 10.3389/fimmu.2024.1474429

  229. Rutkowska-Zapała M, Grabowska A, Lenart M, et al. Transcriptome profiling of regulatory T cells from children with transient hypogammaglobulinemia of infancy. Clinical and Experimental Immunology. 2023; 214(3): 275–288. doi: 10.1093/cei/uxad116

  230. Maltsev D. Clinic-radiological classification of herpesviral encephalitis in humans (systematic review). Journal of NeuroVirology. 2025; 31(3): 219–241. doi: 10.1007/s13365-025-01250-1

  231. Otaki Y, Ogawa E, Higuchi T, et al. Invasive haemophilus influenzae type b infection in a patient with transient hypogammaglobulinemia of infancy. Journal of Infection and Chemotherapy. 2021; 27(12): 1756–1759. doi: 10.1016/j.jiac.2021.07.023

  232. Pienthong T, Apisarnthanarak A, Khawcharoenporn T, et al. Intestinal basidiobolomycosis in a patient with idiopathic CD4 lymphocytopenia. Journal de Mycologie Médicale (Journal of Medical Mycology). 2022; 32(3): 101260. doi: 10.1016/j.mycmed.2022.101260

  233. Samji NS, Verma R, Mohammed SY, et al. Disseminated histoplasmosis involving soft palate, duodenum, sigmoid colon and bone marrow in a patient with isolated CD4+ T-lymphocytopenia. Cureus. 2021; 13(11): e19748. doi: 10.7759/cureus.19748

  234. Shah PM, Hingolikar AP, Tandan S, et al. Idiopathic CD4 lymphocytopenia presenting as cryptococcal meningitis. Journal of Global Infectious Diseases. 2021; 13(1): 56–58. doi: 10.4103/jgid.jgid_182_20

  235. Somboonviboon D, Thongtaeparak W, Suntavaruk P, et al. Disseminated coinfection with mycobacterium avium complex and mycobacterium kansasii in a patient with idiopathic CD4+ lymphocytopenia: A case report. Journal of Infection and Chemotherapy. 2023; 29(12): 1167–1171. doi: 10.1016/j.jiac.2023.08.006

  236. Wu X, Zhai M, Xu A, et al. Disseminated Mycobacterium abscessus infection with idiopathic CD4+ T-lymphocytopenia: A case report and review of the literature. Journal of Medical Case Reports. 2024; 18(1): 645. doi: 10.1186/s13256-024-05009-w

  237. Chen N, Zhang X, Zheng K, et al. Increased risk of group B streptococcus causing meningitis in infants with mannose-binding lectin deficiency. Clinical Microbiology and Infection. 2019; 25(3): 384.e1–384.e3.

  238. Manuel O, Pascual M, Trendelenburg M, et al. Association between mannose-binding lectin deficiency and cytomegalovirus infection after renal transplantation. Transplantation. 2007; 83(3): 359–362.

  239. Damiens S, Poissy J, François N, et al. Mannose-binding lectin levels and variation during invasive candidiasis. Journal of Clinical Immunology. 2012; 32(6): 1317–1323. doi: 10.1007/s10875-012-9748-2

  240. Carmolli M, Duggal P, Haque R, et al. Deficient serum mannose-binding lectin levels and MBL2 polymorphisms increase the risk of single and recurrent cryptosporidium infections in young children. Journal of Infectious Diseases. 2009; 200(10): 1540–1547. doi: 10.1086/606013

  241. DeRenzi A, Penico J. Lymphoproliferative disease in a non-transplant patient and spironolactone’s activity against epstein barr virus. HCA Healthcare Journal of Medicine. 2021; 2(4): 263–266. doi: 10.36518/2689-0216.1241

  242. Dewangan A, Singh J, Kumar D, et al. Disseminated cryptococcosis in idiopathic CD4+ lymphocytopenia. Infectious Disorders – Drug Targets. 2023; 23(1): e210622206242. doi: 10.2174/1871526522666220621110723

  243. Fang L, Zhang J, Lv F. Disseminated cryptococcosis with varicella-zoster virus coinfection of idiopathic CD4 + T lymphocytopenia: A case report and literature review. Virology Journal. 2022; 19(1): 38. doi: 10.1186/s12985-022-01765-7

  244. Fukumoto T, Sakashita Y, Katada F, et al. “Burnt-out” progressive multifocal leukoencephalopathy in idiopathic CD4+ lymphocytopenia. Neuropathology. 2021; 41(6): 484–488. doi: 10.1111/neup.12773

  245. Goto R, Shiota S, Kaimori R, et al. Disseminated nontuberculous mycobacterial infection in a patient with idiopathic CD4 lymphocytopenia and IFN-γ neutralizing antibodies: A case report. BMC Infectious Disease. 2023; 23(1): 58. doi: 10.1186/s12879-023-08020-6.

  246. Kanagiri T, Meena DS, Kumar D, et al. Recurrent pulmonary nocardiosis due to nocardia otitidiscaviarum in a patient with isolated CD4 lymphocytopenia: A case report. BMC Infectious Diseases. 2024; 24(1): 1033. doi: 10.1186/s12879-024-09981-y

  247. Xu J, Chen G, Yan Z, et al. Effect of mannose-binding lectin gene polymorphisms on the risk of rheumatoid arthritis: Evidence from a meta-analysis. International Journal of Rheumatic Diseases. 2021; 24(3): 300–313. doi: 10.1111/1756-185X.14060

  248. Gao DN, Zhang Y, Ren YB, et al. Relationship of serum mannose-binding lectin levels with the development of sepsis:
    A meta-analysis. Inflammation. 2015; 38(1): 338–347. doi: 10.1007/s10753-014-0037-5

  249. Borta S, Popetiu R, Donath-Miklos I, et al. Genetic polymorphism of MBL 2 in patients with allergic bronchial asthma. Maedica. 2019; 14(3): 208–212. doi: 10.26574/maedica.2019.14.3.208

  250. Ludvigsson JF, Neovius M, Ye W, et al. IgA deficiency and risk of cancer: A population-based matched cohort study. Journal of Clinical Immunology. 2015; 35(2): 182–188. doi: 10.1007/s10875-014-0124-2

  251. Heathfield LJ, Martin LJ, van der Heyde Y, et al. Clinical exome sequencing elucidates underlying cause of death in sudden unexpected death of infants: Two case reports. International Journal of Legal Medicine. 2024; 138(2): 693–700. doi: 10.1007/s00414-023-03065-3

  252. Castaño-Jaramillo LM, Rodríguez O, Vélez-Tirado N. Nutritional status in pediatric patients with predominant antibody deficiency. Biomedica. 2024; 44(Sp. 2): 51–62. doi: 10.7705/biomedica.7398

  253. Jörgensen GH, Gardulf A, Sigurdsson MI, et al. Health-related quality of life (HRQL) in immunodeficient adults with selective IgA deficiency compared with age- and gender-matched controls and identification of risk factors for poor HRQL. Quality of Life Research. 2014; 23(2): 645–658. doi: 10.1007/s11136-013-0491-9

  254. Ludvigsson JF, Neovius M, Stephansson O, et al. IgA deficiency, autoimmunity & pregnancy: A population-based matched cohort study. Journal of Clinical Immunology. 2014; 34(7): 853–863. doi: 10.1007/s10875-014-0069-5

  255. Vengen IT, Madsen HO, Garred P, et al. Mannose-binding lectin deficiency is associated with myocardial infarction: The HUNT2 study in Norway. PLoS One. 2012; 7(7): e42113. doi: 10.1371/journal.pone.0042113

  256. Sharma M, Dhaliwal M, Tyagi R, et al. Microbiome and its dysbiosis in inborn errors of immunity. Pathogens. 2023; 12(4): 518. doi: 10.3390/pathogens12040518

  257. Magen E, Mishal J, Vardy D. Selective IgE deficiency and cardiovascular disease. Allergy and Asthma Proceedings. 2015; 36(3): 225–229. doi: 10.2500/aap.2015.36.3825

  258. Ludvigsson JF, Neovius M, Hammarström L. IgA deficiency and mortality: A population-based cohort study. Journal of Clinical Immunology. 2013; 33(8): 1317–1324. doi: 10.1007/s10875-013-9948-4

  259. Merzon E, Farag R, Ashkenazi S, et al. Increased prevalence of attention deficit hyperactivity disorder in individuals with selective immunoglobulin A deficiency: A nationwide case-control study. Journal of Clinical Medicine. 2024; 13(20): 6075. doi: 10.3390/jcm13206075

  260. Williams K, Shorser-Gentile L, Sarvode Mothi S, et al. Immunoglobulin A dysgammaglobulinemia is associated with pediatric-onset obsessive-compulsive disorder. Journal of Child and Adolescent Psychopharmacology. 2019; 29(4): 268–275. doi: 10.1089/cap.2018.0043

  261. Coopmans EC, Chunharojrith P, Neggers SJCMM, et al. Endocrine disorders are prominent clinical features
    in patients with primary antibody deficiencies. Frontiers in Immunology. 2019; 10: 2079. doi: 10.3389/fimmu.2019.02079

  262. Pignata C, Budillon G, Monaco G, et al. Jejunal bacterial overgrowth and intestinal permeability in children with immunodeficiency syndromes. Gut. 1990; 31(8): 879–882. doi: 10.1136/gut.31.8.879

  263. Ida H, Maruyama D, Maeshima AM, et al. Duodenal nodular lymphoid hyperplasia in a patient with IgA deficiency. Clinical Case Reports. 2020; 8(12): 3594–3595. doi: 10.1002/ccr3.3298

  264. Agarwal S, Mayer L. Diagnosis and treatment of gastrointestinal disorders in patients with primary immunodeficiency. Clinical Gastroenterology and Hepatology. 2013; 11(9): 1050–1063. doi: 10.1016/j.cgh.2013.02.024

  265. Demirtaş Güner D, Baskın K. Allergic and immunologic evaluation of children with celiac disease. Frontiers in Pediatrics. 2025; 13: 1568174. doi: 10.3389/fped.2025.1568174

  266. Kato M, Kudo Y, Hatase M, et al. Moyamoya disease associated with a deficiency of complement component 6. Journal of Stroke and Cerebrovascular Diseases. 2022; 31(8): 106601. doi: 10.1016/j.jstrokecerebrovasdis.2022.106601

  267. Rudolph TK, Wipper S, Reiter B, et al. Myeloperoxidase deficiency preserves vasomotor function in humans. European Heart Journal. 2012; 33(13): 1625–1634. doi: 10.1093/eurheartj/ehr193

  268. Magen E, Geishin A, Merzon E, et al. Prevalence of neurological diseases among patients with selective IgA deficiency. Allergy and Asthma Proceedings. 2023; 44(5): e17–e21. doi: 10.2500/aap.2023.44.230036

  269. Foldager L, Köhler O, Steffensen R, et al. Bipolar and panic disorders may be associated with hereditary defects in the innate immune system. Journal of Affective Disorders. 2014; 164: 148–154. doi: 10.1016/j.jad.2014.04.017

  270. Isung J, Williams K, Isomura K, et al. Association of primary humoral immunodeficiencies with psychiatric disorders and suicidal behaviour and the role of autoimmune diseases. JAMA Psychiatry. 2020; 77(11): 1147–1154. doi: 10.1001/jamapsychiatry.2020.1260

  271. Isung J, Isomura K, Williams K, et al. Association of primary immunodeficiencies in parents with psychiatric disorders and suicidal behaviour in their offspring. JAMA Psychiatry. 2023; 80(4): 323–330. 10.1001/jamapsychiatry.2022.4786

  272. Carlsson M, Sjöholm AG, Eriksson L, et al. Deficiency of the mannan-binding lectin pathway of complement and poor outcome in cystic fibrosis: Bacterial colonisation may be decisive for a relationship. Clinical and Experimental Immunology. 2005; 139(2): 306–313. doi: 10.1111/j.1365-2249.2004.02690.x

  273. Ji X,Gewurz H, Spear GT. Mannose binding lectin (MBL) and HIV. Molecular Immunology. 2005; 42(2): 145–152. doi: 10.1016/j.molimm.2004.06.015

  274. van Leeuwen LPM, Van Coillie S, Prévot J, et al. Long term effects of COVID-19 in primary immunodeficiency patients: An IPOPI worldwide survey. Journal of Allergy and Clinical Immunology. 2025: S0091-6749(25)00497-X.

  275. Ameratunga R, Leung E, Woon ST, et al. Selective IgA deficiency may be an underrecognized risk factor for severe COVID-19. Journal of Allergy and Clinical Immunology: In Practice. 2023; 11(1): 181–186. doi: 10.1016/j.jaip.2022.10.002 Tokutake H, Chiba S. A case report of respiratory syncytial virus-infected 8p inverted duplication deletion syndrome with low natural killer cell activity. Tohoku Journal of Experimental Medicine. 2022; 257(4): 347–352. doi: 10.1620/tjem.2022.j052

  276. Bayram N, Ozkinay F, Onay H, et al Mannose-binding lectin gene codon 54 polymorphism susceptible to brucellosis in Turkish children. Turkish Journal of Pediatrics. 2012; 54(3): 234–238.

  277. Thizy G, Caumes E, Molher J, et al. Disseminated mucocutaneous leishmaniasis in a traveller with idiopathic CD4 lymphocytopenia. Journal of Travel Medicine. 2023; 30(8): taad063. doi: 10.1093/jtm/taad063

  278. Leister J, McCarthy L. Pediatric coronavirus (COVID-19) death in a child with cyclic neutropenia. Pediatric Blood & Cancer. 2021; 68(10): e29171. doi: 10.1002/pbc.29171

  279. Schearer J, Merrick C. Idiopathic CD4 lymphocytopenia: An uncommon but fatal cause of pneumocystis pneumonia. Respiratory Medicine Case Reports. 2025; 54: 102177. doi: 10.1016/j.rmcr.2025.102177

  280. Altorjay I, Vitalis Z, Tornai I, et al. Mannose-binding lectin deficiency confers risk for bacterial infections in a large Hungarian cohort of patients with liver cirrhosis. Journal of Hepatology. 2010; 53(3): 484–491. doi: 10.1016/j.jhep.2010.03.028

  281. Núnez-Núñez ME, Monraz-Monteón D, Lona-Reyes JC, et al. Neumonía necrosante en un paciente con deficiencia selectiva de IgA Necrotizing pneumonia in a patient with selective IgA deficiency. Revista Alergia México. 2024; 71(3): 205–211. doi: 10.29262/ram.v71i3.1344

  282. Sarma A. Idiopathic CD4 lymphocytopenia manifesting as chronic non-resolving pneumonia. Lung India. 2023; 40(6): 557–559. doi: 10.4103/lungindia.lungindia_256_23

  283. Garcia-Laorden MI, Sole-Violan J, Rodriguez de Castro F, et al. Mannose-binding lectin and mannose-binding lectin-associated serine protease 2 in susceptibility, severity, and outcome of pneumonia in adults. Journal of Allergy and Clinical Immunology. 2008; 122(2): 368–374. doi: 10.1016/j.jaci.2008.05.037

  284. AlShanableh Z, Haidous M, Wong KM, et al. Immunodeficiency: A protective factor for COVID-19? Cureus. 2022; 14(3): e23094. doi: 10.7759/cureus.23094

  285. Roh S, Ham JY, Song KE, et al. Myeloperoxidase deficiency manifesting as pseudoneutropenia with low mean peroxidase index and high monocyte count in 4 adult patients. Laboratory Medicine. 2020; 51(2): e16–e19. doi: 10.1093/labmed/lmz060

  286. Osthoff M, Trendelenburg M. Impact of mannose-binding lectin deficiency on radiocontrast-induced renal dysfunction. BioMed Research International. 2013; 2013: 962695. doi: 10.1155/2013/962695

  287. Koturoglu G, Onay H, Midilli R, et al. Evidence of an association between mannose binding lectin codon 54 polymorphism and adenoidectomy and/or tonsillectomy in children. International Journal of Pediatric Otorhinolaryngology. 2007; 71(8): 1157–1161. doi: 10.1016/j.ijporl.2007.05.004

  288. Picado C, Mascaró JJ, Vlagea A, et al. Selective IgE deficiency predicts poor or no response of chronic spontaneous urticaria to omalizumab. Journal of Investigational Allergology and Clinical Immunology. 2022; 32(6): 504–506. 10.18176/jiaci.0796

  289. Noonan E, Straesser MD, Makin T, et al. Impaired response to polysaccharide vaccine in selective IgE deficiency. Journal of Clinical Immunology. 2023; 43(6): 1448–1454. doi: 10.1007/s10875-023-01501-y

  290. Osthoff M, Rovó A, Stern M, et al. Mannose-binding lectin levels and major infections in a cohort of very long-term survivors after allogeneic stem cell transplantation. Haematologica. 2010; 95(8): 1389–1396. doi: 10.3324/haematol.2009.017863

  291. Cuesta Andres M, Hidalgo C, et al. Eosinophilia in rheumatoid arthritis masked by eosinophil peroxidase deficiency. Clinical and Laboratory Haematology. 1993; 15(1): 67. doi: 10.1111/j.1365-2257.1993.tb00124.x

  292. Cohen B, Oprea Y, Rosenstreich D, et al. Skin testing is useful in assessing aeroallergen sensitisation in IgE deficient patients with environmental allergy-like symptoms. American Journal of Rhinology & Allergy. 2022; 36(4): 451–458. doi: 10.1177/19458924211073850

  293. Lock RJ, Unsworth DJ. Identifying immunoglobulin-A-deficient children and adults does not necessarily help the serological diagnosis of coeliac disease. Journal of Pediatric Gastroenterology and Nutrition. 1999; 28(1): 81–83. doi: 10.1097/00005176-199901000-00018

  294. Jung CL, Cha MK, Jun BH, et al. A case of IgM deficiency with B cell deficiency detected by ABO discrepancy in a patient with acute osteomyelitis. Annals of Laboratory Medicine. 2013; 33(3): 208–211. doi: 10.3343/alm.2013.33.3.208

  295. Mohamed H, Hedriana HD, Holbrook EA, et al. HIV false-positive test in the setting of CD4 lymphocytopenia. Cureus. 2024; 16(1): e51515. doi: 10.7759/cureus.51515

  296. Dournes G, Bégueret H, Demant X, et al. CT features of genetic mutation-related pulmonary alveolar proteinosis (CCR2 and GATA2 deficiency. Diagnostic and Interventional Imaging. 2025: 106(9):327–329. doi: 10.1016/j.diii.2025.04.007

  297. Anani W, Triulzi D, Yazer MH, et al. Relative IgA-deficient recipients have an increased risk of severe allergic transfusion reactions. Vox Sanguinis. 2014; 107(4): 389–392. doi: 10.1111/vox.12192

  298. Aziri H, Vallianatou K, Balgobin B, et al. Genetic identification of undiagnosed benign ethnic neutropenia in patients receiving clozapine treatment. British Journal of Psychiatry. 2024: 1–5. doi: 10.1192/bjp.2024.236

  299. Mimura K, Shimomura A, Watanabe K, et al. Severe cytopenia during adjuvant chemotherapy for early breast cancer in a patient with idiopathic CD4+ lymphocytopenia. Oncology Letters. 2023; 26(2): 357. doi: 10.3892/ol.2023.13943

  300. Schreier A, Munoz-Arcos L, Alvarez A, et al. Racial disparities in neutrophil counts among patients with metastatic breast cancer during treatment with CDK4/6 inhibitors. Breast Cancer Research and Treatment. 2022; 194(2): 337–351. doi: 10.1007/s10549-022-06574-8

  301. Taylor D, Vallianatou K, Gandhi S, et al. Severe neutropenia unrelated to clozapine in patients receiving clozapine. Journal of Psychopharmacology. 2024; 38(7): 624–635. doi: 10.1177/02698811241262767

  302. Youniss L, Thomas M, Davis EAK. Probable haloperidol decanoate-induced fever in an African American with benign ethnic neutropenia: A case report. Mental Health Clinician. 2021; 11(5): 301–304. doi: 10.9740/mhc.2021.09.301

  303. Rocco JM, Boswell KL, Laidlaw E, et al. Immune responses to SARS-CoV-2 mRNA vaccination in people with idiopathic CD4 lymphopenia. Journal of Allergy and Clinical Immunology. 2024; 153(2): 503–512.

  304. Vossen MG, Kartnig F, Mrak D, et al. Humoral and cellular response to the third COVID-19 vaccination in patients with inborn errors of immunity or mannose-binding lectin deficiency: A prospective controlled open-label trial. Wiener klinische Wochenschrift. 2024; 136(21–22): 598–607. doi: 10.1007/s00508-024-02459-6

  305. Mpofu R, Otwombe K, Mlisana K, et al. Benign ethnic neutropenia in a South African population, and its association with HIV acquisition and adverse event reporting in an HIV vaccine clinical trial. PLoS One. 2021; 16(1): e0241708. doi: 10.1371/journal.pone.0241708

  306. Samileh N, Ahmad S, Farzaneh A, et al. Immunity status in children with bacille Calmette-Guerin adenitis. A prospective study in Tehran, Iran. Saudi Medical Journal. 2006; 27(11): 1719–1724.

  307. Chan K, Loh CYY. Early postoperative infection in patient with IgM deficiency. International Wound Journal. 2024; 21(7): e70003. doi: 10.1111/iwj.70003

  308. Nishikawa S, Hamaoka M, Nakahara H, et al. Management of acute cholecystitis in patient with cyclic neutropenia: A case report. Surgical Case Reports. 2021; 7(1): 29. doi: 10.1186/s40792-021-01117-7

  309. Cahuana-Bartra P, Brunet-Llobet L, Rabassa-Blanco J, et al. Spontaneous osteonecrosis of the jaw in the presence of periodontal disease in an adolescent with cyclic neutropenia. Journal of Dentistry for Children (Chicago). 2025; 92(1): 44–47.

  310. Sakuma Y, Ogawa M, Nakagawa C, et al. Dental treatment under general anesthesia with nasal intubation in a patient with selective immunoglobulin A deficiency. Anesthesia Progress. 2023; 70(3): 140–141. doi: 10.2344/anpr-70-02-13

  311. Parta M, Shah NN, Baird K, et al. Allogeneic hematopoietic stem cell transplantation for GATA2 deficiency using a busulfan-based regimen. Biology of Blood and Marrow Transplantation. 2018; 24(6): 1250–1259. doi: 10.1016/j.bbmt.2018.01.030

  312. Worthley DL, Johnson DF, Eisen DP, et al. Donor mannose-binding lectin deficiency increases the likelihood of clinically significant infection after liver transplantation. Clinical Infectious Diseases. 2009; 48(4): 410–417. doi: 10.1086/596313

  313. Shete M, Thompson JW, Naidu SI, et al. Olaryngological manifestations in children with chronic neutropenia. International Journal of Pediatric Otorhinolaryngology. 2012; 76(3): 392–395. doi: 10.1016/j.ijporl.2011.12.018

  314. Sumida H, Sato S. Refractory and recurrent skin manifestations in an adult with selective immunoglobulin M deficiency. Cureus. 2024; 16(4): e59015. doi: 10.7759/cureus.59015

  315. Tadjali A, Pan S, Perli E, et al. Clinical presentation of idiopathic CD4 lymphocytopenia. BMJ Case Reports. 2023; 16(7): e254746. doi: 10.1136/bcr-2023-254746

  316. Frias Sartorelli de Toledo Piza C, Aranda CS, Solé D, et al. Calculated globulin can be used as a screening test for antibody deficiency in children and adolescents. Frontiers in Immunology. 2024; 15: 1495564. doi: 10.3389/fimmu.2024.1495564

  317. Nepesov S, Yaman Y, Elli M, et al. Chronic neutropenia in childhood: Laboratory and clinical features. Indian Journal of Pediatrics. 2022; 89(9): 894–898. doi: 10.1007/s12098-022-04104-4

  318. Oloyede E, Dzahini O, Barnes N, et al. Benign ethnic neutropenia: An analysis of prevalence, timing and identification accuracy in two large inner-city NHS hospitals. BMC Psychiatry. 2021; 21(1): 502. doi: 10.1186/s12888-021-03514-6

  319. Oz-Alcalay L, Steinberg-Shemer O, Elron E, et al. Clinical and laboratory characteristics of pediatric patients with ACKR1/DARC-associated neutropenia. Pediatric Blood & Cancer. 2025; 72(1): e3143. doi: 10.1002/pbc.31430

  320. Tsaknakis G, Gallì A, Papadakis S, et al. Incidence and prognosis of clonal hematopoiesis in patients with chronic idiopathic neutropenia. Blood. 2021; 138(14): 1249–1257. doi: 10.1182/blood.2021010815

  321. Wågström P, Hjorth M, Appelgren D, et al. Immunological characterization of IgG subclass deficiency reveals decreased tregs and increased circulating costimulatory and regulatory immune checkpoints. Frontiers in Immunology. 2024; 15: 1442749. doi: 10.3389/fimmu.2024.1442749

  322. Wang B, Singh H, Ellis M, et al. Hidden in the absence: Clinicopathologic insights on kidney diseases associated with selective IgA deficiency. Laboratory Investigation. 2025; 105(7): 104163. doi: 10.1016/j.labinv.2025.104163

  323. Murdaca G, Paladin F, Gangemi S. Potential genetic approach to specific primary immunodeficiencies: Which perspectives? Frontiers in Bioscience (Landmark Edition). 2025; 30(3): 36795. doi: 10.31083/fbl36795

  324. Soomann M, Bily V, Elgizouli M, et al. Variants in IGLL1 cause a broad phenotype from agammaglobulinemia to transient hypogammaglobulinemia. Journal of Allergy and Clinical Immunology. 2024; 154(5): 1313–1324.e7. doi: 10.1016/j.jaci.2024.08.002

  325. Sgrulletti M, Baselli LA, Castagnoli R, et al. IPINeT Ped-unPAD study: Goals, design, and preliminary results. Journal of Clinical Medicine. 2024; 13(15): 4321. doi: 10.3390/jcm13154321

  326. Schoettler JJ, Schleissner LA, Heiner DC. Familial IgE deficiency associated with sinopulmonary disease. Chest. 1989; 96(3): 516–21. doi: 10.1378/chest.96.3.516

  327. Park JK, Kim D, Lee JM, et al. Clinical utility of personalised serum IgG subclass ratios for the differentiation of IgG4-related sclerosing cholangitis (IgG4-SC) from primary sclerosing cholangitis (PSC) and cholangiocarcinoma (CCA). Journal of Personalized Medicine. 2022; 12(6): 855.

  328. Steffen U, Koeleman CA, Sokolova MV, et al. IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nature Communications. 2020; 11(1): 120. doi: 10.1038/s41467-019-13992-8

  329. Chawda JG, Chaduvula N, Patel HR, et al. Salivary SIgA and dental caries activity. Indian Pediatrics. 2011; 48(9): 719–21. doi: 10.1007/s13312-011-0113-y

  330. Parker AR, Allen S, Harding S. Concentration of anti-pneumococcal capsular polysaccharide IgM, IgG and IgA specific antibodies in adult blood donors. Practical Laboratory Medicine. 2016; 5: 1–5. doi: 10.1016/j.plabm.2016.02.004

  331. Janssen WJ, Bloem AC, Vellekoop P, et al. Measurement of pneumococcal polysaccharide vaccine responses for immunodeficiency diagnostics: Combined IgG responses compared to serotype-specific IgG responses. Journal of Clinical Immunology. 2014; 34(1): 3–6. doi: 10.1007/s10875-013-9925-y

  332. Barroso S, Sánchez B, Alvarez AJ, et al. Complement component C7 deficiency in two Spanish families. Immunology. 2004; 113(4): 518–523. doi: 10.1111/j.1365-2567.2004.01997.x

  333. Ammann RA, Bodmer N, Simon A, et al. Serum concentrations of Mannan-binding lectin (MBL) and MBL-associated serine protease-2 and the risk of adverse events in pediatric patients with cancer and fever in neutropenia. Journal of the Pediatric Infectious Diseases Society. 2013; 2(2): 155–161. doi: 10.1093/jpids/pit005

  334. Fidler KJ, Wilson P, Davies JC, et al. Increased incidence and severity of the systemic inflammatory response syndrome
    in patients deficient in mannose-binding lectin. Intensive Care Medicine. 2004; 30(7): 1438–1445. http://dx.doi.org/
    10.1007/s00134-004-2302-9

  335. Møller-Kristensen M, Jensenius JC, Jensen L, et al. Levels of mannan-binding lectin-associated serine protease-2 in healthy individuals. Journal of Immunological Methods. 2003; 282: 159–167. doi: 10.1016/j.jim.2003.08.012

  336. Maltsev DV. Effectimness of long-term continuous immunomodulatory therapy with gamma-recombinant interferon in patients with clinically manifest forms of neutrophil myeloperoxidase deficiency. Archivos Venezolanos de Farmacología y Terapéutica. 2020; 39(5): 672–679. doi: 10.5281/zenodo.4256793

  337. Ochkur SI, Kim JD, Protheroe CA, et al. A sensitive high throughput ELISA for human eosinophil peroxidase: A specific assay to quantify eosinophil degranulation from patient-derived sources. Journal of Immunological Methods. 2012;
    384(1–2): 10–20. doi: 10.1016/j.jim.2012.06.011

  338. Genel F, Kutukculer N. Prospective, randomised comparison of OM-85 BV and a prophylactic antibiotic in children with recurrent infections and immunoglobulin A and/or G subclass deficiency. Current Therapeutic Research, Clinical and Experimental. 2003; 64(8): 600–615. doi: 10.1016/j.curtheres.2003.09.008

  339. Mousallem T, Hall G, Pan A, et al. Updates in the understanding of immunoglobulin replacement therapy in primary immune deficiency disorders: Function, composition, and role in reconstitution and immunomodulation. Immunology and Allergy Clinics of North America. 2025; 45(2): 251–265. doi: 10.1016/j.iac.2025.01.007

  340. Melo KM, Alves LM, Valente CFC, et al. One-year intravenous immunoglobulin replacement therapy: Efficacy in reducing hospital admissions in pediatric patients with inborn errors of immunity . Journal of Pediatrics (Rio de Janeiro). 2022; 98(2): 190–195. doi: 10.1016/j.jped.2021.05.011

  341. Szaflarska A, Lenart M, Rutkowska-Zapała M, et al. Clinical and experimental treatment of primary humoral
    immunodeficiencies. Clinical and Experimental Immunology. 2024; 216(2): 120–131. doi: 10.1093/cei/uxae008

  342. Özer M, Tekeli S, Doğan S, et al. Adverse events associated with intravenous immunoglobulin infusions in pediatric patients with primary immunodeficiency: A 10-year single-center study. Archives of Pediatrics. 2025; 32(4): 231–237. doi: 10.1016/j.arcped.2025.01.008

  343. Mokhtari S, Asquith JM, Kareem SS, et al. Intravenous immunoglobulin (IVIG) for patients with severe neurotoxicity associated with chimeric antigen receptor T-cell (CAR-T) therapy. International Journal of Molecular Sciences. 2025; 26(8): 3904. doi: 10.3390/ijms26083904

  344. Olinder-Nielsen AM, Granert C, Forsberg P, et al. Immunoglobulin prophylaxis in 350 adults with IgG subclass deficiency and recurrent respiratory tract infections: A long-term follow-up. Scandinavian Journal of Infectious Diseases. 2007; 39(1): 44–50. doi: 10.1080/00365540600951192

  345. Vivarelli E, Matucci A, Bormioli S, et al. Effectiveness of low-dose intravenous immunoglobulin therapy in minor primary antibody deficiencies: A 2-year real-life experience. Clinical and Experimental Immunology. 2021; 205(3): 346–353. doi: 10.1080/00365540600951192

  346. Lieberman P, Berger M. Intramuscular versus intravenous immunoglobulin replacement therapy and measurement of immunoglobulin levels during immunoglobulin replacement therapy. Journal of Allergy and Clinical Immunology: In Practice. 2013; 1(6): 705–706. doi: 10.1016/j.jaip.2013.08.007

  347. Dinleyici EC, Frey G, Kola E, et al. Clinical efficacy of IgM-enriched immunoglobulin as adjunctive therapy in neonatal and paediatric sepsis: A systematic review and meta-analysis. Frontiers in Pediatrics. 2023; 11: 1239014. doi: 10.3389/fped.2023.1239014

  348. Burnim M, Putcha N, LaFon D, et al. Serum immunoglobulin G levels are associated with risk for exacerbations: An analysis of SPIROMICS. American Journal of Respiratory and Critical Care Medicine. 2025; 211(2): 215–221. 10.1164/rccm.202311-2184OC

  349. Page R, Friday G, Stillwagon P, et al. Asthma and selective immunoglobulin subclass deficiency: Improvement of asthma after immunoglobulin replacement therapy. Journal of Pediatrics. 1988; 112(1): 127–131. doi: 10.1016/S0022-3476(88)80137-9

  350. Vivarelli E, Matucci A, Parronchi P, et al. Primary antibody deficiencies represent an underestimated comorbidity in asthma patients: Efficacy of immunoglobulin replacement therapy in asthma control. Journal of Asthma. 2023; 60(6): 1227–1236. doi: 10.1080/02770903.2022.2140435

  351. Vivarelli E, Perlato M, Accinno M, et al. Asthma phenotype can be influenced by recurrent respiratory infections in patients with primary antibody deficiency: The impact of Ig therapy. Respiration. 2025; 104(7): 1–9. doi: 10.1159/000543792

  352. Fishman P, Bar-Yehuda S, Shoenfeld Y. IVIg to prevent tumour metastases. International Journal of Oncology. 2002; 21(4): 875–880.

  353. Natrus LV, Maltsev DV, Klys YG, et al. The effectiveness of therapy w cryopreserved human plasma in patients with deficiency of mannose binding lectin suffering from herpes virus infection. Wiadomości Lekarskie. 2021; 74(8): 1824–1828.

  354. Frakking FN, Brouwer N, van de Wetering MD, et al. Safety and pharmacokinetics of plasma-derived mannose-binding lectin (MBL) substitution in children with chemotherapy-induced neutropenia. European Journal of Cancer. 2009; 45(4): 505–5012. doi: 10.1016/j.ejca.2008.11.036

  355. Petersen KA, Matthiesen F, Agger T, et al. Phase I safety, tolerability, and pharmacokinetic study of recombinant human mannan-binding lectin. Journal of Clinical Immunology. 2006; 26(5): 465–475. doi: 10.1007/s10875-006-9037-z

  356. Alstadhaug KB, Croughs T, Henriksen S, et al. Treatment of progressive multifocal leukoencephalopathy with interleukin 7. Journal of the American Medical Association Neurology. 2014; 71(8): 1030–1035. doi: 10.1001/jamaneurol.2014.825

  357. Baume DM, Robertson MJ, Levine H, et al. Differential responses to interleukin 2 define functionally distinct subsets of human natural killer cells. European Journal of Immunology. 1992; 22(1): 1–6. doi: 10.1002/eji.1830220102

  358. See DM, Tilles JG. alpha-Interferon treatment of patients with chronic fatigue syndrome. Immunological Investigations. 1996; 25(1–2): 153–164. doi: 10.3109/08820139609059298

  359. King R, Tuthill C. Immune modulation with thymosin alpha 1 treatment. Vitamins and Hormones. 2016; 102: 151–178. doi: 10.1016/bs.vh.2016.04.003

  360. Sugahara S, Ichida T, Yamagiwa S, et al. Thymosin-alpha1 increases intrahepatic NKT cells and CTLs in patients with chronic hepatitis B. Hepatology Research. 2002; 24(4): 346–354. doi: 10.1016/s1386-6346(02)00145-6

  361. Chen TK, Batra JS, Michalik DE, et al. Recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF) as adjuvant therapy for invasive fungal diseases. Open Forum Infectious Diseases. 2022; 9(11): ofac535. doi: 10.1093/ofid/ofac535

  362. Dale DC, Cottle TE, Fier CJ, et al. Severe chronic neutropenia: Treatment and follow-up of patients in the severe chronic neutropenia international registry. American Journal of Hematology. 2003; 72(2): 82–93. doi: 10.1002/ajh.10255

  363. Suga S, Tanaka R, Tabata N, et al Successful bone marrow transplantation in a child with combined IgG subclass deficiency and neutropenia. Bone Marrow Transplantation. 1995; 16(6): 847–848.

  364. Simonis A, Fux M, Nair G, et al. Allogeneic hematopoietic cell transplantation in patients with GATA2 deficiency-A case report and comprehensive review of the literature. Annals of Hematology. 2018; 97(10): 1961–1973. doi: 10.1007/s00277-018-3388-4

  365. Appasamy R, Bryant J, Hassanein T, et al. Effects of therapy with interferon-alpha on peripheral blood lymphocyte subsets and NK activity in patients with chronic hepatitis C. Clinical Immunology and Immunopathology. 1994; 73(3): 350–357. doi: 10.1006/clin.1994.1209

  366. Bolay H, Karabudak R, Aybay C, et al. Alpha interferon treatment in myasthenia gravis: effects on natural killer cell activity. Journal of Neuroimmunology. 1998; 82(2): 109–115. doi: 10.1016/s0165-5728(97)00146-x

  367. Okumura A, Ishikawa T, Maeno T, et al. Changes in natural killer T cell subsets during therapy in type C
    hepatitis and hepatocellular carcinoma. Hepatology Research. 2005; 32(4): 213–217. doi: 10.1016/J.HEPRES.2005.02.008

  368. Yamagiwa S, Matsuda Y, Ichida T, et al. Sustained response to interferon-alpha plus ribavirin therapy for chronic hepatitis C is closely associated with increased dynamism of intrahepatic natural killer and natural killer T cells. Hepatology Research. 2008; 38(7): 664–672. doi: 10.1111/j.1872-034x.2008.00317.x

  369. Gigli G, Caielli S, Cutuli D, et al. Innate immunity modulates autoimmunity: Type 1 interferon-beta treatment in multiple sclerosis promotes growth and function of regulatory invariant natural killer T cells through dendritic cell maturation. Immunology. 2007; 122(3): 409–417. doi: 10.1111/j.1365-2567.2007.02655.x

  370. Holland SM, Eisenstein EM, Kuhns DB, et al. Treatment of refractory disseminated nontuberculous mycobacterial infection with interferon gamma. A preliminary report. New England Journal of Medicine. 1994; 330(19): 1348–1355. doi: 10.1056/nejm199405123301904

  371. Netea MG, Brouwer AE, Hoogendoorn EH, et al. Two patients with cryptococcal meningitis and idiopathic CD4 lymphopenia: Defective cytokine production and reversal by recombinant interferon-gamma therapy. Clinical Infectious Diseases. 2004; 39(9): e83–e87.

  372. Caligiuri MA, Murray C, Robertson MJ, et al. Selective modulation of human natural killer cells in vivo after prolonged infusion of low dose recombinant interleukin 2. Journal of Clinical Investigation. 1993; 91(1): 123–132. doi: 10.1172/jci116161

  373. Cunningham-Rundles C, Murray HW, Smith JP. Treatment of idiopathic CD4 T lymphocytopenia with IL-2. Clinical and Experimental Immunology. 1999; 116(2): 322–325. doi: 10.1046/j.1365-2249.1999.00886.x

  374. Francois B, Jeannet R, Daix T, et al. Interleukin-7 restores lymphocytes in septic shock: The IRIS-7 randomised clinical trial. JCI Insight. 2018; 3(5): e98960. doi: 10.1172/jci.insight.98960

  375. Chen J. Effects of thymosin-alpha1 on cell immunity function in patients with septic shock. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2007; 19(3): 153–155.

  376. Maltsev D, Stefanyshyn V. Efficacy of combined immunotherapy with propes and inflamafertin in selective deficiency of NK and NKT cells in children with autism spectrum disorders associated with genetic deficiency of the folate cycle. Romanian Journal of Neurology. 2021; 25(4): 536–540.

  377. Hirna H, Maltsev D. Alpha/beta-defensins influence on the humoral immunity and complications in cancer of the oral cavity and oropharynx. Immunotherapy. 2024; 16(13): 869–878. doi: 10.1080/1750743X.2024.2376517

  378. Hirna HA, Maltsev DV, Kostyshyn ID, et al. Results of the study of factors predicting the risk of the development of grade III radiation-induced mucositis during radiation or chemoradiation therapy in patients with oral cavity and oropharynx cancer. Klinická Onkologie. 2024; 37(3): 189–201. doi: 10.48095/ccko2024189

  379. Hirna HA, Maltsev DV, Natrus LV, et al. Study of the immunomodulating influence of preparation alpha/beta-defensins on chemo/radiotherapy of patients with oral and oropharyngeal cancer. Physiology Journal. 2021; 67(4): 86–96. doi: 10.15407/fz67.04.086

  380. Hirna HA, Maltsev DV, Rozhko MM, et al. Results of the study of mucosal immunity indices in patients with cancer of the oral cavity and oropharynx during radiotherapy or chemoradiotherapy therapy and immunotherapy with alpha/beta-defensins. Klinická Onkologie. 2023; 36(2): 112–123. doi: 10.48095/ccko2023112

  381. Wang JF, Park AJ, Rendini T, et al. Lawrence transfer factor: Transfer of specific immune memory by dialyzable leukocyte extract from a CD8+ T cell line. Journal of Drugs in Dermatology. 2017; 16(12): 1198–1206.

  382. Castrejón Vázquez MI, Reséndiz-Albor AA, Ynga-Durand MA, et al. Dialysable leukocyte extract (Transferon™) administration in sepsis: Experience from a single referral pediatric intensive care unit. BioMed Research International. 2019; 2019: 8980506. doi: 10.1155/2019/8980506

  383. Homberg TA, Lara I, Andaluz C, et al. Quality of life in adult patients using dialyzable leukocyte extract for allergic rhinitis. Medicine (Baltimore). 2023; 102(27): e34186. doi: 10.1097/md.0000000000034186

  384. Guo C, Ye JZ, Song M, et al. Poly I: C promotes malate to enhance innate immune response against bacterial infection. Fish and Shellfish Immunology. 2022; 131: 172–180. doi: 10.1016/j.fsi.2022.09.064

  385. Morris D, Guerra C, Khurasany M, et al. Glutathione supplementation improves macrophage functions in HIV. Journal of Interferon and Cytokine Research. 2013; 33(5): 270–279. doi: 10.1089/jir.2012.0103

  386. Richie JP Jr, Nichenametla S, Neidig W, et al. Randomised controlled trial of oral glutathione supplementation on body stores of glutathione. European Journal of Nutrition. 2015; 54(2): 251–263. doi: 10.1007/s00394-014-0706-z

  387. Sinha R, Sinha I, Calcagnotto A, et al. Oral supplementation with liposomal glutathione increases body stores of glutathione and markers of immune function. European Journal of Clinical Nutrition. 2018; 72(1): 105–111. doi: 10.1038/ejcn.2017.132

  388. Richard SA. Exploring the pivotal immunomodulatory and anti-inflammatory potentials of glycyrrhizic and glycyrrhetinic acids. Mediators of Inflammation. 2021; 2021: 6699560. doi: 10.1155/2021/6699560

  389. Naik S, Nicholas SK, Martinez CA, et al. Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. Journal of Allergy and Clinical Immunology. 2016; 137(5): 1498–1505. doi: 10.1016/j.jaci.2015.12.1311

  390. Cuellar-Rodriguez J, Gea-Banacloche J, Freeman AF, et al. Successful allogeneic hematopoietic stem
    cell transplantation for GATA2 deficiency. Blood. 2011; 118(13): 3715–3720. doi: 10.1182/blood-2011-06-365049

  391. Sicre de Fontbrune F, Chevillon F, Fahd M, et al. Long-term outcome after allogeneic stem cell transplantation for GATA2 deficiency: An analysis of 67 adults and children from France and Belgium. British Journal of Haematology. 2024; doi: 10.1111/bjh.19691

  392. Yamamoto K, Najima Y, Iizuka H, et al. Successful cord blood transplantation for idiopathic CD4+ lymphocytopenia. Acta Haematologica. 2021; 144(6): 698–705. doi: 10.1159/000516347

  393. Karaman S, Erdem SB, Gülez N, et al. The significance of B-cell subsets in patients with unclassified hypogammaglobulinemia and association with intravenous immunoglobulin replacement requirement. Iranian Journal of Immunology. 2018; 15(1): 1–13. doi: ijiv15i1a1

  394. Söderström T, Söderström R, Enskog A. Immunoglobulin subclasses and prophylactic use of immunoglobulin in immunoglobulin
    G subclass deficiency. Cancer. 1991; 68(6): 1426–1429. doi: 10.1002/1097-0142(19910915)68:6+%3C1426::aid-cncr
    2820681404%3E3.0.co;2-r

  395. Ghia D, Thota P, Ritchie T, et al. Feasibility and resource utilization of nurse-administered subcutaneous immunoglobulin therapy in antibody deficiency: A cross-sectional study. PLoS One. 2025; 20(1): e0316797. doi: 10.1371/journal.pone.0316797

  396. Moral Moral P, Cabanero-Navalon MD, López-León PT, et al. Infectious outcomes of a standardized subcutaneous immunoglobulin dose reduction strategy in primary immune deficiencies amid global shortage. Frontiers in Immunology. 2025; 15: 1527514.

  397. Fregonese B, Canepa C, Pasino M, et al. Selective IgA deficiency. Substitute treatment with human IgA-enriched immunoglobulins. Minerva Pediatrica. 1986; 38(17–18): 751–758.

  398. Langereis JD, van der Flier M, de Jonge MI. Limited innovations after more than 65 years of immunoglobulin replacement therapy: Potential of IgA- and IgM-enriched formulations to prevent bacterial respiratory tract infections. Frontiers in Immunology. 2018; 9: 1925. doi: 10.3389/fimmu.2018.01925

  399. Taietti I, Votto M, De Filippo M, et al. Selective IgM deficiency: Evidence, controversies, and gaps. Diagnostics. 2023; 13(17): 2861. doi: 10.3390/diagnostics13172861

  400. Langereis JD, Jacobs JFM, de Jonge MI, et al. Plasma therapy leads to an increase in functional IgA and IgM concentration in the blood and saliva of a patient with X-linked agammaglobulinemia. Journal of Translational Medicine. 2019; 17(1): 174. doi: 10.1186/s12967-019-1928-x

  401. Crooks CV, Wall CR, Cross ML, et al. The effect of bovine colostrum supplementation on salivary IgA in distance runners. International Journal of Sport Nutrition and Exercise Metabolism. 2006; 16(1): 47–64. doi: 10.1123/ijsnem.16.1.47

  402. Mero A, Miikkulainen H, Riski J, et al. Effects of bovine colostrum supplementation on serum IGF-I, IgG,
    hormone, and salivary IgA during training. Journal of Applied Physiology. 1997; 83(4): 1144–1151. doi: 10.1152/jappl.1997.83.4.1144

  403. Patıroğlu T, Kondolot M. The effect of bovine colostrum on viral upper respiratory tract infections in children with immunoglobulin A deficiency. Clinical Respiratory Journal. 2013; 7(1): 21–26. doi: 10.1111/j.1752-699x.2011.00268.x

  404. Jesenak M, Majtan J, Rennerova Z, et al. Immunomodulatory effect of pleuran (β-glucan from pleurotus ostreatus) in children with recurrent respiratory tract infections. International Immunopharmacology. 2013; 15(2): 395–399. doi: 10.1016/j.intimp.2012.11.020

  405. McFarlin BK, Carpenter KC, Davidson T, et al. Baker’s yeast beta glucan supplementation increases salivary IgA and decreases cold/flu symptomatic days after intense exercise. Journal of Dietary Supplements. 2013; 10(3): 171–183. doi: 10.3109/19390211.2013.820248

  406. Park SY, Kim KJ, Jo SM, et al. Euglena gracilis (euglena ) powder supplementation enhanced immune function through natural killer cell activity in apparently healthy participants: A randomised, double-blind, placebo-controlled trial. Nutrition Research. 2023; 119: 90–97. doi: 10.1016/j.nutres.2023.09.004

  407. Maltsev DV, Hurzhii OO. Toxoplasma chorioretinitis in primary myeloperoxidase deficiency. Journal of Ophthalmology. 2019; 4: 75–81. doi: 10.31288/oftalmolzh201947581

  408. Jakopin Ž. Murabutide revisited: A review of its pleiotropic biological effects. Current Medicinal Chemistry. 2013; 20(16): 2068–2079. doi: 10.2174/0929867311320160002

  409. Vidal V, Dewulf J, Bahr GM. Enhanced maturation and functional capacity of monocyte-derived immature dendritic cells by the synthetic immunomodulatormurabutide . Immunology. 2001; 103(4): 479–487. doi: 10.1046/j.1365-2567.2001.01269.x

  410. Keizer MP, Wouters D, Schlapbach LJ, et al. Restoration of MBL-deficiency: Redefining the safety, efficacy and viability of MBL-substitution therapy. Molecular Immunology. 2014; 61(2): 174–184. doi: 10.1016/j.molimm.2014.06.005

  411. Fioredda F, Skokowa J, Tamary H, et al. The European guidelines on diagnosis and management of neutropenia in adults and children: A consensus between the European hematology association and the EuNet-INNOCHRON COST Action. Hemasphere. 2023; 7(4): e872. doi: 10.1097/hs9.0000000000000872

  412. Lubitz PA, Dower N, Krol AL. Cyclic neutropenia: An unusual disorder of granulopoiesis effectively treated with recombinant granulocyte colony-stimulating factor. Pediatric Dermatology. 2001; 18(5): 426–432. doi: 10.1046/j.1525-1470.2001.01974.x

  413. Oshio M, Yamauchi T. Successful treatment of chronic idiopathic neutropenia in an elderly with ciclosporin. Rinsho Ketsueki. 2022; 63(7): 753–758. doi: 10.11406/rinketsu.63.753.

  414. Kobayashi M, Ueda K, Kojima S, et al. Serum granulocyte colony-stimulating factor levels in patients with chronic neutropenia of childhood: Modulation of G-CSF levels by myeloid precursor cell mass. British Journal of Haematology. 1999; 105(2): 486–490.

  415. Vo Ngoc DT, Krist L, van Overveld FJ, et al. The long and winding road to IgA deficiency: Causes and consequences. Expert Review of Clinical Immunology. 2017; 13(4): 371–382. doi: 10.1080/1744666x.2017.1248410

  416. Magen E, Blum I, Waitman DA, et al. Autoimmune inner ear disease among patients with selective IgA deficiency. Audiology and Neurotology. 2021; 26(2): 127–134. doi: 10.1159/000509577

  417. Magen E, Merzon E, Green I, et al. Selective IgA deficiency and COVID-19. Journal of Allergy and Clinical Immunology: In Practice. 2023; 11(6): 1936–1938. doi: 10.1016/j.jaip.2023.02.016

  418. Patel NC, Walter JE, Wasserman RL, et al. Efficacy, safety, tolerability, and serum IgG trough levels of hyaluronidase-facilitated subcutaneous immunoglobulin 10% in US pediatric patients with primary immunodeficiency diseases. Journal of Clinical Immunology. 2025; 45(1): 81. doi: 10.1007/s10875-025-01862-6

  419. Ramírez-Ramírez D, Vadillo E, Arriaga-Pizano LA, et al. Early differentiation of human CD11c+NK Cells with γδ T cell activation properties is promoted by dialyzable leukocyte extracts. Journal of Immunological Research. 2016; 2016: 4097642.

  420. Bourseau-Quetier C, Doutre MS. Diffuse molluscum contagiosum associated with GATA2 deficiency. Annales de Dermatologie et de Vénéréologie. 2025; 152(2): 103378. doi: 10.1016/j.annder.2025.103378

  421. Feng Y, Wu Q, Zhang T, et al. Natural killer cell deficiency experiences higher risk of sepsis after critical intracerebral hemorrhage. International Journal of Immunopathology and Pharmacology. 2021; 35: 20587384211056495. doi: 10.1177/20587384211056495

  422. Ilonze C, Galipp KM, Scordino T, et al. A case of cyclic neutropenia and associated amyloidosis. Journal of Pediatric Hematology/Oncology. 2021; 43(8): e1115–e1117. doi: 10.1097/mph.0000000000002217

  423. Lao Z, Fu J, Wu Z, et al. Case report: Five-year periodontal management of a patient with two novel mutation sites in ELANE-induced cyclic neutropenia. Frontiers in Genetics. 2022; 13: 972598. doi: 10.3389/fgene.2022.972598

  424. Lisco A, Ortega-Villa AM, Mystakelis H, et al. Reappraisal of idiopathic CD4 lymphocytopenia at 30 years. New England Journal of Medicine. 2023; 388(18): 1680–1691. doi: 10.1056/nejmoa2202348

Supporting Agencies



Copyright (c) 2026 Dmytro Maltsev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).